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Abstract Visual binding is the process of associating the
responses of visual interneurons in different visual sub-
modalities all of which are responding to the same object
in the visual field. Recently identified neuropils in the insect
brain termed optic glomeruli reside just downstream of the
optic lobes and have an internal organization that could sup-
port visual binding. Working from anatomical similarities
between optic and olfactory glomeruli, we have developed
a model of visual binding based on common temporal fluc-
tuations among signals of independent visual submodalities.
Here we describe and demonstrate a neural network model
capable both of refining selectivity of visual information in
a given visual submodality, and of associating visual signals
produced by different objects in the visual field by develop-
ing inhibitory neural synaptic weights representing the visual
scene. We also show that this model is consistent with initial
physiological data from optic glomeruli. Further, we discuss
how this neural network model may be implemented in optic
glomeruli at a neuronal level.
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1 Introduction

Visual binding refers to the process of grouping neuronal
responses produced by one object while differentiating them
from responses produced by others (von derMalsburg 1999).
This process has been long studied and modeled with refer-
ence to vertebrate brains, but it is currently unknownwhether
insects make use of visual binding, and if so what neu-
ronal mechanisms may be used. The presence of recently
identified structures termed optic glomeruli (Strausfeld and
Okamura 2007) in the insect brain suggest one method by
which rudimentary visual binding may be performed. These
structures have been identified in the lateral protocerebra of
both flies (Strausfeld and Okamura 2007) and bees (Paulk
et al. 2009), and it is probable that they are present in
many other insect species. Optic glomeruli receive retino-
topic input from the visual system, and these signals are
likely to consist of visual “submodalities,” including motion,
orientation and color (Okamura and Strausfeld 2007; Mu
et al. 2012). Output of the optic glomeruli are far fewer
than their inputs, and this reduction suggests optic glomeruli
are involved in processing visual information into higher-
level representations—possibly coding for features and/or
objects (Okamura and Strausfeld 2007; Strausfeld and Oka-
mura 2007; Strausfeld et al. 2007; Mu et al. 2012).

Detailed anatomical studies of optic glomeruli have been
carried out (Strausfeld and Okamura 2007) but their phys-
iology is still under active investigation, and only a very
limited set of experiments have been conducted (Okamura
and Strausfeld 2007; Mu et al. 2012). Initial electrophysio-
logical experiments have shown optic glomeruli to receive
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broadly orientation-tuned inputs from the optic lobes, and
that neurons projecting from optic glomeruli have a nar-
rower orientation tuning, presumably due to computations
within the glomeruli. Perhaps the best route to model these
structures is to leverage their anatomical similarity to anten-
nal lobe olfactory glomeruli (Strausfeld and Okamura 2007),
which are well mapped and modeled in flies (Jefferis 2005),
honeybees (Linster and Smith 1997), locusts (Bazhenov et al.
2001), and moths (Hildebrand 1996).

In the antennal lobes, all olfactory receptor neurons
expressing a given receptor type converge to the same
glomerulus (Jefferis 2005). Each glomerulus serves to pro-
cess incoming information from olfactory receptor neurons
using local inhibitory interneurons, and to provide processed
information via projection neurons to higher-level neural
circuits in the mushroom bodies and the lateral protocere-
brum (Ng et al. 2002). Local interneurons are thought to get
synaptic input from only one glomerulus (Fonta et al. 1993).
In models of the antennal lobe (Linster and Masson 1996;
Bazhenov et al. 2001), olfactory receptor neurons excite both
local interneurons and projection neurons, and local interneu-
rons inhibit other local interneurons, projection neurons, and
the receptor neurons themselves.

Given the apparent anatomical homology between optic
and olfactory glomeruli, what would be the most likely cor-
respondence of elements between their neuronal circuits?
Columnar neurons observed projecting from the lobula com-
plex to optic glomeruli would undoubtedly take the place
of olfactory receptor neurons. Recent studies (Okamura and
Strausfeld 2007; Mu et al. 2012) have described neurons
which might well be morphologically homologous to anten-
nal lobe local inhibitory interneurons. Projections from optic
glomeruli to higher brain areas likely correspond to olfactory
projection neurons. It is reasonable to assume that similar
interconnectionsmay exist between these populations of neu-
rons to those known for the antennal lobe.

What visual inputs might optic glomeruli receive? A num-
ber of visual submodalities are available from the lobula
complex, including coarsely retinotopic motion, orientation,
and likely color information. However, there are only 27
optic glomeruli in the large blowfly Calliphora, many fewer
than the number of retinotopic visual sampling points, even
when compared to the eye of the tiny fruit fly Drosophila
that has only 900 ommatidia. Perhaps in rough correspon-
dence to the number of optic glomeruli, there are 23 types of
columnar neurons projecting from the lobula complex to the
optic glomeruli (Okamura and Strausfeld 2007). From this
information, we conclude that visual information is spatially
integrated before processing by optic glomeruli.

The functional significance of insect antennal lobe olfac-
tory glomeruli is still a subject of debate. These structures
may provide a degree of concentration invariance, provide
a spatial code for complex odor mixtures, and perhaps even

synchronize firing of projection neurons to make a tempo-
ral code (Heisenberg 2003). Models of the antennal lobe
have demonstrated short-term memory (Linster and Masson
1996), synchronization of output neurons (Bazhenov et al.
2001), overshadowing, blocking, and unblocking (Linster
and Smith 1997). Strong similarities exist between insect
antennal lobe olfactory glomeruli and the vertebrate olfactory
bulb, the most crucial being that in both structures like-typed
olfactory receptor signals converge into glomerular regions
(Hildebrand 1996). In fact, a number of existing models may
apply to both vertebrate and insect systems. The common
theme behind all of these possible functions seems to be
that olfactory glomeruli encode the identity of the odor, but
abstract away the details such as spatial concentration and
the detailed time course of receptor responses.

It has been hypothesized (Hopfield 1991) that the olfac-
tory bulb may be solving the olfactory binding problem;
that is, the olfactory bulb may be able to use information
about the fluctuation of individual receptor responses to
bind together those responses that encode a single scent.
Hopfield proposed a recurrent neural network for modeling
vertebrate olfactory glomeruli. Olfactory glomeruli are pre-
sumed to group similar chemical features together into an
“odor space” where unique odors, composed of chemical
mixtures having unique structures, are identified based on
their unique patterns of glomerular activation (Hildebrand
and Shepherd 1997). Hopfield’s model utilized a Hebbian-
style learning rule to separate time-varying components of
unknown scent mixtures, thus solving an olfactory version of
the well-studied blind source separation problem, in which
the goal is to separate out the contributions of individual
“sources” only given an unknown (“blind”) linear mixture
of those sources. Blind source separation is an area well
addressed in the neural network literature (Herault and Jutten
1986; Cichocki et al. 1997) and is discussed in detail in our
companion paper (Northcutt and Higgins 2016).

If optic glomeruli are homologous to olfactory glomeruli,
what might their function be, translated into visual terms? If
they encode the identity of what is seen, abstracting away the
details—inparticular, the spatial location of visual features—
they might be encoding for visual features corresponding to
a given object without regard to where it is in the visual field,
and thus addressing the visual binding problem.

We have developed a model of optic glomeruli which
extends the work of Hopfield (1991) and Herault and Jut-
ten (1986), thus relating optic glomeruli to previous work
on olfactory processing and blind source separation. This
model, described below, uses first-stage recurrent inhibitory
neural networks to model the sensory refinement observed
in fly optic glomeruli (Okamura and Strausfeld 2007) by
sharpening the selectivity of very broadly tuned inputs.
We demonstrate below how this sensory refinement net-
work can be used to improve visual information coding
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in the orientation, color and motion visual submodalities.
The outputs of these first-stage networks are then provided
to a second-stage recurrent inhibitory neural network layer
to demonstrate rudimentary visual binding. Each of these
recurrent inhibitory networks may correspond to an optic
glomerulus.

2 The visual binding network

Since visual information is almost certainly spatially inte-
grated before projecting to optic glomeruli, but the exact
pattern of this integration is unknown, in our initial model
of this neuronal circuit we spatially integrated all visual sub-
modalities across the entire visual field. This leads to an initial
modelwith far less “glomeruli” than observed in the fly brain,
but which (as will be shortly shown) has properties that make
it worthy of deeper investigation.

The input to our model consists of a two-dimensional
Cartesian spatial array of visual sampling points, each
of which has red, green, and blue (RGB) photoreceptors.
Although a strict model of insect compound eye color vision
would be based on a hexagonal array of green, blue, and ultra-
violet (UV) photoreceptors (Snyder 1979), we use a standard
RGB image for simplicity of human visualization and com-
puter representation, and without loss of generality, since
neither the spatial sampling pattern nor the particular spec-
tral content of the input image are integral to the model.

As diagrammed in Fig. 1, this spatial array of photore-
ceptors is processed to produce local measures of three
visual submodalities: motion, orientation, and color. This
processing results in two-dimensional (2D) “feature images”
indicating local imagemotion in four cardinal directions, ori-
entation at three different angles, and each of the three colors.
Details of each of these computations are given below.

Each of these 10 local 2D “feature images” was then
spatially summedandgroup-normalized so that different sub-
modalities were comparable in magnitude, resulting in 10
wide-field scalar signals which became input to the model.
We refer to these inputs analytically as

i(t) = [
i1(t) i2(t) . . . i10(t)

]ᵀ (1)

This 10-element column vector represents motion, orienta-
tion, and color across the entire visual scene without regard
to spatial position, and was provided as input to the three
first-stage networks of Fig. 2, which refined the selectivity of
visual information in each submodality. For future reference,
it will be convenient to define subsets of these inputs

iM(t) = [
i1(t) i2(t) i3(t) i4(t)

]ᵀ (2)

iO(t) = [
i5(t) i6(t) i7(t)

]ᵀ (3)
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Fig. 1 Computational diagram of visual inputs to binding model. See
text for details. The inputRGB imagewas converted to grayscale (G) for
motion and orientation processing. Local image motion was computed
using the Hassenstein–Reichardt model (HR) in both the horizontal
(IH ) and vertical (IV ) directions, and then separated into four strictly
positive 2D “feature images” indicating upward, downward, leftward,
and rightward motion. Similarly, 2D orientation feature images were
computed from the grayscale image using three difference-of-Gaussian
filters oriented at 0◦, 60◦ and 120◦. Finally, each of the red, green, and
blue color planes was taken as a feature image, for a total of 10. Each
feature imagewas then spatially summed and group-normalized (Σ , see
text), resulting in 10 scalars which became input to the neural network
model (color figure online)

iC(t) = [
i8(t) i9(t) i10(t)

]ᵀ (4)

corresponding respectively to the inputs to the first-stage
motion, orientation, and color networks shown in Fig. 2. Sim-
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Fig. 2 Diagram of the two-stage neural network model of visual bind-
ing. Large circles represent units in the neural network. Unshaded
half-circles at connections indicate excitation, and filled half-circles
indicate inhibition. The system input consisted of a vector of 10 time-
varying inputs i(t) representing spatially summed motion, orientation,
and color information. Three first-stage recurrent inhibitory networks
refined the selectivity of each visual submodality separately, producing
signals j(t) which were then input to an identically organized second-
stage network, resulting in outputs o(t)

ilarly, we refer to the outputs of the first-stage networks
as

j(t) = [
j1(t) j2(t) . . . j10(t)

]ᵀ (5)

where it will again be convenient to define subsets for each
submodality jM(t), jO(t), and jC(t) with the same indices
as in (2)–(4).

The full set of first-stage output signals j(t) comprised
the input to the larger second-stage neural network shown in
Fig. 2. The set of outputs from second-stage neurons will be
referred to as

o(t) = [
o1(t) o2(t) . . . o10(t)

]ᵀ (6)

which represent the signals projecting from optic glomerulus
processing to the central brain.

2.1 Processing of visual inputs

Inputs to the model were sequences of RGB images, each of
which had to be converted to grayscale to model biological
achromatic motion and orientation processing. We chose the
simplest possible algorithm for this conversion by taking the
average of the red, green, and blue color values for each
individual pixel.

Details of motion, orientation, and color processing are
given below.

2.1.1 Motion

Hassenstein and Reichardt (1956) proposed a cybernetic
model of the insect optomotor response, which has since
been elaborated (van Santen and Sperling 1985) to become
the best-accepted model of insect small-field motion detec-
tion (Borst and Egelhaaf 1989), and which is mathematically
equivalent to models of primate motion detection (Adelson
and Bergen 1985). We used a simple version of the elabo-
ratedReichardt detector (ERD) to emulate retinotopicmotion
processing in the insect compound eye.

Despite the roughly hexagonal organization of the com-
pound eye (which may also be viewed as a distorted
rectangular lattice), retinotopic motion computing circuits
are organized along the “vertical” and “horizontal” axes of
the lattice (Stavenga 1979).

Referring to Fig. 3, horizontal and vertical motion feature
images IH(x, y, t) and IV(x, y, t) were calculated from the
grayscale input image P(x, y, t) at each time t as

IH(x, y) = PH(x + 1, y) · PHL(x, y)

− PH(x, y) · PHL(x + 1, y) (7)

IV(x, y) = PH(x, y + 1) · PHL(x, y)

− PH(x, y) · PHL(x, y + 1) (8)

where PH(x, y, t) was P(x, y, t) after being processed at
each point (x, y) by a first-order temporal high-pass filter
with a time constant of 0.5 s, the intent of which was sim-
ply to remove any sustained component of the input signal.
PHL(x, y, t) was PH(x, y, t) after being further processed
at each point (x, y) by a first-order temporal low-pass filter
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Fig. 3 Computational diagram of one elaborated Reichardt detector
(ERD) unit at spatial position n. 2D arrays of such units were com-
puted in both horizontal and vertical orientations to compose motion
feature images. Each ERD required the grayscale photoreceptor input
P(n) along with a neighboring input P(n+1), and passed these signals
through a set of high-pass (HP) and low-pass (LP) temporal filters as
shown. After the final multiplication (Π ) and difference (Σ), the mag-
nitude and sign of the output signal IM (n) reflect the speed and direction
of visual motion along the orientation from pixel n to pixel n + 1

with a time constant of 50 ms, used to introduce phase delay.
After cross-multiplication and subtraction, these computa-
tions provide signed feature images IH and IV representing
the spatiotemporal “motion energy” (Adelson and Bergen
1985) at each pixel in both horizontal and vertical directions.

To compute the fourmotion feature images, we eliminated
negative signs by computing outputs representing each of the
four cardinal directions separately

Ileft(x, y) = pos(−IH(x, y)) (9)

Iright(x, y) = pos(IH(x, y)) (10)

Idown(x, y) = pos(−IV(x, y)) (11)

Iup(x, y) = pos(IV(x, y)) (12)

where

pos
(
s
) =

{
s s ≥ 0

0 s < 0
(13)

The four scalar motion signals î1(t), î2(t), î3(t), and î4(t),
comprising the vector îM(t), were computed by spatial sums
over all x and y of the four motion feature images of (9)–(12)
above, and respectively provide wide-field scalar measure-
ments of global image motion in the leftward, rightward,
downward and upward directions. The hat notation is used to
denote “raw” input signals prior to adaptive group normal-
ization (explained in Sect. 2.1.4).

2.1.2 Orientation

Cells that respond preferentially to orientation of visual stim-
uli have been observed in a plethora of organisms, including
felines (Hubel andWiesel 1959), primates (Hubel andWiesel
1968) and honeybees (Srinivasan et al. 1994). “Center-

surround” orientation selectivity has been mathematically
modeled in numerousways, includingGaborwavelets (Adel-
son andBergen 1985) and by using a difference-of-Gaussians
(DoG) function (Rodieck 1965).

The leadingmodel of orientation selectivity in insects sup-
ports a direct neuronal implementation of the DoG model
(Rivera-Alvidrez et al. 2011). Thismodel, based onboth elec-
trophysiological and neuroanatomical evidence, makes use
of spatial spreading of photoreceptor inputs by two distinct
types of amacrine cells that results in two Gaussian-blurred
versions of the input image. Subtraction of these two blurred
images can produce a literal difference of Gaussians.

In contrast to visual motion, which is computed along two
axes of the compound eye and thus four directions, behavioral
data on orientation selectivity in honeybees (Yang and Mad-
dess 1997; Srinivasan et al. 1994) suggests that insects are
maximally sensitive to three orientations, which may seem
more natural given the hexagonal shape of the compound
eye.

For these reasons, we have chosen to model orienta-
tion selectivity with DoG functions at three orientations:
θs1 = 0◦, θs2 = 60◦ and θs3 = 120◦. The shape of these func-
tions was chosen to approximate electrophysiological data
on narrowing of orientation selectivity by optic glomeruli
(Strausfeld et al. 2007).

DoG filter kernels G(x, y, θs)with orientation preference
θs were computed as

xr (x, y, θs) = −x · sin (θs) − y · cos (θs) (14)

yr (x, y, θs) = x · cos (θs) − y · sin (θs) (15)

G (xr , yr , θs) = e
−

(
x2r /(2σ 2

x1)+y2r /(2σ 2
y1)

)

2π σx1 σy1

− e
−

(
x2r /(2 σ 2

x2)+2 y2r /(2σ 2
y2)

)

2π σx2 σy2
(16)

in which (14) and (15) serve to rotate the coordinate system
to the desired angle θs , and in (16), σx1 and σy1 are constants
dictating the x and y size and shape of the “center” Gaussian,
just asσx2 andσy2 do for the “surround”Gaussian. Thekernel
G(θs) is formulated to have zero spatial sum and therefore
reject the mean spatial intensity. In our simulations, we used
σx1 = 19, σy1 = 6, σx2 = 22, and σy2 = 9, all in units of
pixels. For convenience in referring to visual stimuli later,
we have adopted the angular convention that a bar with 0◦
orientation had its long axis perfectly vertical.

At each time t , 2D spatial convolution of the dynamic
grayscale image P(t) with each of the three static filter ker-
nels G(θs1), G(θs2), and G(θs3) produced three orientation
feature images I0◦(t), I60◦(t), and I120◦(t). Each of the three
kernels was computed at full image resolution and convolu-
tion was accomplished by multiplication in the frequency
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domain. Spatial sums over all x and y of the absolute value
(so that both signs of contrast are represented) of each of these
three feature images respectively produced scalar orientation
features î5(t), î6(t), and î7(t), which together comprise the
vector îO(t).

2.1.3 Color

A multitude of organisms, including flies, honeybees, and
humans, have trichromatic visual systems (Land and Nilsson
2002). As mentioned earlier, despite the well-known spec-
tral shift between human and insect photoreceptor tunings,
for convenience of human visualization and internal repre-
sentation we have made use of the three colors commonly
used in computer image formats: red, green and blue (RGB).
If input images were provided instead with “color planes”
of green, blue, and UV, as if viewed by fly photoreceptors
(Snyder 1979), the model would produce similar results to
what is shown here for RGB images.

Since color is explicitly represented in the image, the color
“feature images” I red(t), Igreen(t), and Iblue(t) were taken
simply as the red, green, and blue “color planes” of the image
(that is, the 2D array of pixels of a given color). Spatial sums
over all x and y produced three scalar color features î8(t),
î9(t), and î10(t), which together comprise the vector îC(t).

2.1.4 Adaptive group normalization

Due to the vast differences in the algorithms presented above
for computing motion, orientation, and color inputs, the
“raw” features îM(t), îO(t), and îC(t) differ by orders of
magnitude. In order to make these signals comparable to
one another, and to simultaneously account for the dynamic
nature of visual imagery, each of these raw input vectors was
normalized by a scalar adaptive factor computed as the max-
imum value of any element of the vector in the recent past.

Specifically, at each time t each of the three vectors of
inputs to the first-stage network was computed as

i(t) = î(t)/M(t) (17)

where M(t) was a scalar group normalization factor com-
puted as the maximum value of any element of vector î(t)
over the prior 2 s. If the normalization factor M(t) was zero,
indicating that all components of any given input vector were
zero in the recent past, i(t) was set to zero.

This operation, repeated independently for vectors rep-
resenting each of the three visual submodalities, provided
input vectors iM(t), iO(t), and iC(t), all elements of which
remained comparable in magnitude even as the image
changed, with each group of signals sustaining a maximum
value of approximately unity. Despite the simplicity of this
technique, it can be viewed as implementing a form of adap-

tation quite similar to that seen atmultiple levels in biological
vision systems.

2.2 Network temporal evolution

The neural network model shown in Fig. 2 employs two
stages of processing. The first stage incorporates three inde-
pendent networks which refine inputs iM(t), iO(t), and iC(t)
from each of the visual submodalities into intermediate out-
puts jM(t), jO(t), and jC(t). The second stage uses a fourth
larger network to combine all outputs j(t) from thefirst-stage
networks and learn an internal representation of common
temporal fluctuations within this group of inputs, resulting
in a vector of outputs o(t).

We have chosen to use a two-stage network not only
because optic glomeruli have been observed to refine the
representation in one specific submodality (specifically, ori-
entation: see Strausfeld et al. 2007), but because the sensory
refinement from the first stage greatly improves learning of
the second stage (see Results).

Despite the apparently dissimilar purposes of the two
stages in our network, all four neural networks employed
have identical structure and differ only in the number of
inputs and thus neurons used, and in parameters of the learn-
ing rule. For each, we have used a fully connected recurrent
inhibitory networkwhich learns by changing aweight matrix
which represents the inhibition between each pair of neurons.
In this sectionwedescribe all networks generically, providing
the time evolution equations and learning rule for a network
of N neuronswith a generalized column vector of inputs i(t),
an N×N inhibitory weight matrixW , and the corresponding
column vector of outputs o(t).

All inputs to each of the four networks were processed
through a high-pass filter, since neurons rarely pass on
information about unchanging signals. The outputs of each
networkwere also processed through a high-pass filter as part
of the learning rule. In this section we use the compact nota-
tion i ′(t) to represent a first-order high-pass-filtered version
of the signal i(t), and o′(t) to represent a first-order high-
pass-filtered version of the signal o(t). The time constant of
the high-pass filter used on network inputs, the purpose of
which is to prevent long-term sustained inputs (such as the
color of a static background) from ever entering the network,
was τHI = 1.0s. The time constant of the high-pass filter used
on network outputs in the learning rule described below was
τHO = 0.5s.

Our network was inspired by the seminal work of Herault
and Jutten (1986) on blind source separation, and by that
of Hopfield (1991), who modeled olfactory perception using
temporal fluctuations in the mammalian olfactory bulb, but
is distinct from both prior networks as detailed below.
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2.2.1 Temporal dynamics

Early vision in the insect optic lobes is dominated by cells that
represent signals with graded potentials (Arnett 1972) rather
thanwith trains of action potentials as is the case inmammals
(Albrecht andGeisler 1991). Like the optic lobes fromwhich
they take their inputs, the optic glomeruli we model here are
comprised primarily of graded potential neurons, but also
contain a number of spiking interneurons (Mu et al. 2012),
with their detailed interconnection pattern yet unknown.

As in a multitude of prior neural network models includ-
ing the ones which inspired the present network (Herault and
Jutten 1986; Hopfield 1991; Anderson 1995), we allow the
outputs of individual neurons to be either positive or negative,
primarily for reasons of analytical tractability. Despite this
oversimplification of the electrical responses of real neurons,
as has been long argued for prior networks, neurons in our
network may be considered an approximate model of either
graded potential neurons, or (to a lesser extent) of spiking
neurons. In the case of graded potential neurons, network
outputs may be reasonably considered to model a scaled ver-
sion of the neuronal potential relative to its resting potential;
in this case, negative network outputs simply indicate a neu-
ronal response that is inhibited with respect to rest. In the
case of a spiking neuron with a nonzero spontaneous firing
rate, network outputs may be considered to model the time-
averaged neuronal firing rate relative to the spontaneous rate.
However, since the spontaneous firing rates of neurons vary
widely andmaybe very small, the spiking neuron approxima-
tion is less accurate than for graded potential neurons. Since
optic glomeruli are primarily comprised of graded poten-
tial neurons, this network provides a reasonable compromise
between modeling accuracy and analytical tractability.

By a similar line of reasoning, the “weighted sum” tempo-
ral evolution rule common to decades of neural networks—a
variation ofwhich is described below for ourmodel—may be
justified as an approximate model of neuronal interactions.
Direct input frompresynaptic graded potential cells in insects
leads to similarly shaped postsynaptic potentials (Douglass
and Strausfeld 2005), with both excitation and inhibition rel-
ative to the presynaptic resting potential being passed through
some synaptic weight to postsynaptic neurons. The response
of a graded potential neuron with multiple presynaptic con-
nections may be modeled as a sum of the presynaptic inputs
relative to resting, with each input weighted by the strength
of the corresponding synapse. For a spiking neuron, over
some limited range of integrated postsynaptic currents the
average firing rate is proportional to the total current input
(Koch 1999). Averaged over time, a train of action potentials
from multiple presynaptic neurons may be reasonably mod-
eled as providing a postsynaptic current input proportional
to the firing rate of each presynaptic neuron weighted by the
strength of the corresponding synaptic interconnection.

Given the justifications above,we canmodel the activation
on(t) of neuron n as

on(t) = i ′n(t) −
N∑

k=1

Wn,k · ok(t − τi ) (18)

where i ′n(t) represents a high-pass-filtered excitatory input,
Wn,k represents the strength of the inhibitory synaptic path-
way from neuron k to neuron n, and ok(t) is the activation
of a different neuron k in the network. Inhibition between
biological neurons may be accomplished directly, or indi-
rectly through an inhibitory interneuron, but in either case,
it inevitably results in a finite delay, which we represent as
a single lumped delay τi . This equation may be written in
matrix form as

o(t) = i ′(t) − W · o(t − τi ) (19)

thus expressing the current activation of each neuron as a sum
of the corresponding high-pass-filtered input with aweighted
sum of the delayed inhibitory activation of all other neurons
(as described in the next section, diagonal elements of W
were constrained to be zero to avoid self-inhibition). Since
biophysical details of the inhibition within optic glomeruli
are not yet available, the value of τi is unknown, but the very
existence of this finite inhibition delay is (as we show below)
crucial to the function of the model. For this reason, we have
formulated the temporal dynamics of our model as

o(t) = i ′(t) − W · o(t − �t) (20)

where�t is the simulation time step of 10 ms. The use of�t
as the inhibition delay τi provides the smallest finite delay
possible in our model. This equation for temporal dynamics
was used in all simulations.

In the case when the simulation time step �t is much
smaller than the time course of changes in the high-pass-
filtered inputs i ′n(t), (20) may be approximated as

o(t) = i ′(t) − W · o(t) (21)

Equation (21)–apart from the high-pass filtering of the
inputs—has long been a common formulation for a fully
connected inhibitory neural network used in blind source sep-
aration (Herault and Jutten 1986; Jutten and Herault 1991;
Cichocki et al. 1997). However, while (21) is linear and well
suited for theoretical analysis, it is not a realistic model of
any physical system because the outputs have absolutely no
time-dependence on their own history or that of any other
signal. In fact, directly from this equation the outputs o(t)
can be computed instantaneously as

o(t) = [I + W ]−1 · i ′(t) (22)
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(where I is the identity matrix) so long as [I + W ] is not
singular. Thus if the input i ′(t) changes radically in a fem-
tosecond, so will the output, meaning that the network has
no true “dynamics,” but rather computes an instantaneous
function of the inputs. This cannot be true for any realistic
neuronal model. Further, since the outputs can be computed
instantaneously without any history dependence, a network
described by (21) can be singular and thus impossible to
evaluate, but cannot be temporally unstable.

The seeminglyminor difference betweenEq. (20) and (21)
has significant consequences to the dynamics of the network,
despite the fact that the time scale of changes to network
inputs and outputs is typically much larger than the simula-
tion time step �t , making the approximation of (21) quite
reasonable. Unlike the approximate equation, the recurrent
network of (20) contains closed loops through which a signal
could pass over time, growing larger with each pass if any
‘loop gain’ were greater than one, thus leading to the possi-
bility of temporal instability under certain conditions of the
inhibitory weight matrix W .

The stability of systems of equations such as (20) has long
been studied in the theory of linear control systems (Trentel-
man et al. 2012), and the condition for temporal stability
is most simply stated by requiring that the magnitude of all
eigenvalues of theweightmatrixW be strictly less than unity.
This condition is equivalent to guaranteeing that the loop gain
around all loops in the network is less than one. The closer
the magnitude of the eigenvalues ofW are to unity, the more
the system is prone to oscillation in response to high temporal
frequency inputs.

For these reasons, we only use the approximation of (21)
when required to make theoretical analysis tractable (see
Northcutt and Higgins 2016), while (20) is used in all simu-
lations.

To distinguish between the specific weight matrices of
our four networks, the generic symbol W used above will
be replaced for the first-stage motion, orientation, and color
networks, respectively, with M (4 × 4), O (3 × 3), and C
(3× 3), and for the second-stage network with T (10× 10).

2.2.2 Learning rule

Given the fully connected inhibitory structure of these net-
works, the function of the model is largely dictated by
the learning rule implemented. The learning rule described
below is common to all four networks in ourmodel and serves
to detect common temporal fluctuations in a set of input sig-
nals. In the case of the first stage, this has the effect of refining
the representation of each visual submodality by developing
lateral inhibition between elementswhich are simultaneously
activated. For the second stage, this same learning rule devel-
ops inhibitory associations between inputs from thefirst stage

which come to represent the characteristics of distinct objects
in the visual scene.

The learning rule for each of our four networks, used to
generate the inhibitoryweightmatrices generically described
asW based on common temporal fluctuations of the network
inputs, is a modified version of the learning rule of Cichocki
et al. (1997), which itself is a refinement of Hebb’s venerable
learning rule (Hebb 1949).Hebbian learning, firstmodeled as
an increase in synaptic strength when the average firing rate
of pre- and postsynaptic neurons was simultaneously large,
is now associated with the biological phenomena of long-
term potentiation and depression (Markram et al. 1997; Bi
and Poo 1998; Song et al. 2000). These phenomena—which
intriguingly were modeled by Gerstner et al. (1996) before
the seminal biological results were published—describe how
synaptic efficacy increases or decreases depending on the rel-
ative timing of pre- and postsynaptic neuronal firing. Since
our model does not explicitly incorporate spiking neurons,
using a learning rule based on this spike-timing-dependent
plasticity (STDP) is not possible. However, Gerstner and
Kistler (2002) have shown that when pre- and postsynaptic
spikes are generated from independent Poisson processes,
very similar results to STDP may be obtained from a learn-
ing rule based on average firing rate. Such a rule is used in
our networks and described below and is chosen because it
provides very well-developed spatially asymmetric Hebbian
learning and also because it fits well into the existing theoret-
ical framework for blind source separation. With this being
said, as noted earlier, spiking neurons are present in optic
glomeruli—although their connection pattern is yet unknown
and thus not yet modeled—and STDPmaywell be the under-
lying biological basis for the learning modeled here.

In our simulations, weight matrices W were initialized to
zero so that the initial state of the system was o(t) = i ′(t),
and thus before learning began, network outputswere exactly
equal to the high-pass filtered inputs. Each off-diagonal ele-
ment Wn,k (n �= k) of the weight matrix was learned based
on high-pass-filtered versions of network outputs on(t) and
ok(t) as

dWn,k

dt
= γ · μ(t) · g(o′

n) · f (o′
k) (23)

where γ is a scalar learning rate. The learning onset function
μ(t) was used to prevent sudden weight changes at the time
ttrain at which learning began

μ(t) = (
1 − e−(t−ttrain)/τl

) · u(t − ttrain) (24)

where τl = 2 s is the time constant used to gradually acti-
vate the learning rule, and u(t) is the unit step function.
Weights were updated at each simulation timestep by numer-
ical integration of (23). Diagonal elements of W were held
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at zero, thus preventing self-inhibition. Any element of W
that became negative from a learning rule update was set to
zero to avoid unintentional excitation.

The high-pass filters used on outputs on(t) and ok(t)
caused learning of the weight matrix to be dependent on tem-
poral fluctuations of the input, rather than simply on input
values. This was true despite the fact that inputs were already
high-pass-filtered, because the time constant τHO = 0.5 s
of the high-pass filter used on the outputs was smaller than
the one previously used on the inputs with time constant
τHI = 1.0 s, resulting in a higher cutoff frequency that atten-
uated lower-frequency signals.

Key to the learning rule are the nonlinear “activation
functions” f () and g() through which the high-pass-filtered
outputs were processed before being used for learning, and
without which the learning rule is symmetrically Hebbian,
and may only develop symmetric weight matrices W . These
activation functions were used to introduce higher than
second-order statistics of the filtered outputs into the learning
rule, and an extremely wide variety of choices is possi-
ble (Hyvärinen and Oja 1998). We have empirically chosen
f (x) = x3 and g(x) = tanh(πx) to improve separation of
signals in the present model, similar to the activation func-
tions long used for blind source separation networks (Herault
and Jutten 1986; Jutten and Herault 1991; Cichocki et al.
1997). However, in our learning rule, the positions of the
expansive and compressive activation functions f () and g()
are exchanged with one another as compared to previous
work on blind source separation, with f () applying to col-
umn elements k and g() to row elements n.

As addressed in detail in a companion paper (Northcutt
and Higgins 2016), this exchange of activation function posi-
tions has the effect of optimizing our network’s learning for
the “overdetermined case” (Joho et al. 2000) in which the
number of hidden sources to be separated is less than the
number of neurons. The overdetermined case has rarely been
considered crucial in blind source separation, since in most
cases the number of network inputs (for example, micro-
phones in an auditory case) may be easily changed to match
the number of hidden sources present. For this reason, the
overdetermined case is less well addressed in the literature.
However, given the fixed size (10 units) of our second-stage
network, and the unknown number of distinct objects in the
input image sequence, this is always the case for our second-
stage visual binding network.

2.3 Training of first-stage networks

The purpose of the first stage of our model is to sharpen the
representation of each sensory modality by learning lateral
inhibition, a well-known technique for sensory refinement
(Linster and Smith 1997) that has been proposed as a method

by which redundant information is removed from photore-
ceptor signals in the fly visual system (Laughlin 1983).

Because we consider the first-stage network to represent
long-term learning from visual experience rather than devel-
oping a representation of the current visual scene as in the
second stage, all three first-stage networks (color, motion,
and orientation) were trained simultaneously using a visual
stimulus specifically designed to elicit equal response from
all visual submodalities. This visual stimulus is a radially
symmetric contractingpattern of concentric ringswith slowly
flickering overall brightness and is described mathematically
at each point (x, y) and time t by

Θ(t) = 2π · ff · t (25)

Ψ (r, t) = 2π · fR · r + 2π · fm · t (26)

S (r,Θ,Ψ ) = e
− r2

2σ2S

(
1 + sin(Θ)

2

) (
1 + cos(Ψ )

2

)
(27)

where r = √
x2 + y2 is the radial distance from the stimu-

lus image center. The first term of (27) is a radial Gaussian
envelope with spatial standard deviation σS = 25 pixels.
The second term provides a temporal flicker with frequency
ff = 0.5 Hz. The third term describes a pattern of contract-
ing radial rings with spatial frequency fR = 0.2 cycles per
pixel and temporal frequency fm = 0.5 Hz.

The visual stimulus of (27) was provided before train-
ing of the first-stage networks began for a time ttrain,1 = 4 s
sufficient for all temporal filters and the input adaptation algo-
rithm described in Sect. 2.1.4 to stabilize.

Unless otherwise specified below, all image sequences
were presented at 100 frames per second. The learning rates
used for first-stage motion, orientation, and color networks
respectively were γM = 5, γO = 5, and γC = 5. Because the
visual stimulus of (27) provides identical signals to all inputs
of each of the three submodalities, it functionally reduces
the learning rule of (23) to a purely symmetric Hebbian
rule, a situation in which all network weights will increase
uniformly so long as the network continues to be trained.
Therefore, to guarantee temporal stability of the final net-
work, we continued training each first-stage network only
until the magnitude of the largest eigenvalue of each weight
matrix reached a value of V1,max = 0.9, after which the
corresponding learning rate γ for that network was set to
zero, terminating training. First-stage training was consid-
ered complete when all three networks had reached this state.

The second stage was not trained (γ2 was set to zero)
until all three first-stage networks had finished training, after
which the weight matrices of the three first-stage networks
were fixed. It would certainly be possible to train both first
and second stages simultaneously, thus using a meaningful
image sequence to train the first stage rather than the con-
trived stimulus of (27), and after a longer training period than
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that shown in Results, quite similar results to those shown
would be obtained. However, tomost clearly demonstrate the
function of each stage, we have trained each independently.

2.4 Training of second-stage networks

As with the first stage, the visual stimulus was provided
before training for a time ttrain,2 = 4 s sufficient for all tempo-
ral filters, the input adaptation algorithm, and the first-stage
networks to stabilize, after which training began.

Unless otherwise specified below, the learning rate used
for the second-stage networkwasγ2 = 0.5. Since the second-
stage network model is intended to learn continually in order
to reflect changing objects in the visual scene, no condition
for stopping its training was required. However, during train-
ing, we ensured network stability by limiting the maximum
magnitude of any eigenvalue of the connection matrix T to
V2,max = 0.95. If, after any update of the connection matrix,
the maximum eigenvalue magnitude V exceeded V2,max, the
matrix T was multiplied by a scalar factor V2,max/V , which
had the effect of reducing themaximumeigenvalue to exactly
V2,max.

3 Results

All experiments were performed in MATLAB (The Math-
Works, Natick, MA). For all but the last of the experiments
shown below, the fundamental visual stimulus element was a
50×12 pixel bar on a black background. To characterize the
first-stage networks, a single bar was presented in a sequence
of images—each of which was 100 pixels wide by 100 pixels
high—in which the direction of motion, orientation, or color
varied during the experiment.

For all second-stage visual binding experiments but the
last shown below, one, two, or three bars were presented in
sequences of 500 pixel wide by 500 pixel high images as
different parameters of the stimulus were varied as described
below.

3.1 Motion refinement

The motion refinement network was trained as described in
Sect. 2.3, and the resulting 4 × 4 connection matrix M was
nearly uniform with all off-diagonal values approximately
equal to 0.3.

To demonstrate the effect of the trainedmotion refinement
network, an image sequence containing a bar moving orthog-
onal to its orientation was first presented to the network. A
vector of four inputs iM was computed from this input image
sequence and processed through the first-stage motion net-
work to produce refined outputs jM . Outputs were allowed
time to stabilize, after which their value was recorded. The
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Fig. 4 First-stage motion refinement. On this polar plot, inputs iM(t)
are visible as thin-outlined nearly circular lobes in each of the four car-
dinal directions plotted against the direction of visual stimulus motion.
Outputs jM(t) are outlined in bold and are clearly narrowed in angular
extent with respect to the inputs, although this effect is not pronounced

orientation of this bar was varied over all possible angles,
and the results are shown in Fig. 4. Due to the operation of
the HR motion detector, inputs on this polar plot appear as
near-circular lobes oriented in each of the four cardinal direc-
tions. Outputs are outlined in bold and are clearly narrower
in angular extent than the inputs, but this narrowing is not
exaggerated due to the excellent angular separation of the
inputs.

Because the motion inputs were already well separated in
angle, does that mean that the first-stage motion network has
little or no effect? To show that this is not the case, we pre-
sented image sequences inwhich the bar alwaysmoved to the
right (0◦), but varied in orientation from−85◦ (leaning to the
far left) to 85◦ (leaning to the far right), with an orientation
of 0◦ meaning that it moved orthogonal to its longest dimen-
sion. This stimulus demonstrates the well-known aperture
problem (Nakayama and Silverman 1988), which arises in
visual motion detection when the small spatial extent of a
local motion detector makes it impossible to unambiguously
resolve the global direction of an object’s motion. Due to
the aperture problem, an angled bar moving strictly to the
right generates signals from small-field motion detectors in
vertical directions as well.

Figure5 shows the output of the motion refinement net-
work in response to these stimuli. Note that across the entire
angular extent, in cases where more than two motion inputs
were simultaneously active, the weakest output is almost
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Fig. 5 First-stage motion processing in the presence of the aperture
problem. a Motion inputs to the first-stage network as the orientation
of a bar that always moved to the right (0◦) was varied from −85◦ to
85◦ (plotted on the horizontal axis). The large central lobe peaking at
0◦ corresponds to the desired response (rightward motion), whereas the
two smaller lobes that peak at −45◦ and 45◦ respectively correspond to
motion in the upward and downward directions, and result from local
motion detector responses to the vertical components of motion from
all four edges of the bar. bCorrespondingmotion outputs from the first-
stage network, showing significant reduction of the undesired upward
and downward responses

completely suppressed. The undesired upward and down-
ward responses are reduced in both magnitude and angular
extent in the outputs relative to the inputs, resulting in a reduc-
tion of the ambiguity in the direction of bar motion.

3.2 Orientation refinement

The first-stage orientation network, which processed a vector
of three inputs iO computed from the input image sequence
to produce refined outputs jO, was trained as described in
Sect. 2.3, and the resulting 3 × 3 connection matrix O was
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Fig. 6 First-stage orientation refinement. a Inputs to the orientation
network plotted against bar angle in degrees showing three elliptical
responses oriented at 0◦, 60◦, and 120◦, directly resulting from the
DoG filter of (16) with parameters given in Sect. 2.1.2 operating on
a rectangular bar stimulus. b Outputs from the orientation refinement
network, with the narrower “peanut shapes” indicating a clear reduction
of angular overlap between outputs as compared to inputs. Note that we
have adopted the angular convention that a bar with 0◦ orientation had
its long axis perfectly vertical

nearly uniform with all off-diagonal values approximately
equal to 0.45.

The orientation network was tested by presenting a cen-
tered stationary bar and recording inputs and outputs as the
orientation of the bar was varied. Figure6 shows the results
of this experiment.

The elliptical shape of each of the three input orienta-
tion responses in Fig. 6a is due to the mix of the small-field
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responses from the long edges at the sides of the rectangular
bar with the shorter orthogonal edges at the top and bottom.
Note that, since each filter is tuned for stimulus orientation
rather than direction, each is equally sensitive to the angle
θs used in (16) and to θs + 180◦. Figure6b shows the output
responses, which exhibit a distinct angular narrowing in ori-
entation relative to the inputs due to the lateral inhibition of
this network.

3.3 Color refinement

The first-stage color network, which processed an RGB vec-
tor of inputs iC computed from the input image sequence
to produce refined outputs jC, was trained as described in
Sect. 2.3, and the resulting 3 × 3 connection matrix C was
nearly uniform with all off-diagonal values approximately
equal to 0.45.

The color network was tested by presenting a stationary
bar which varied only in color. To demonstrate the improve-
ment in color separation provided by this network, we varied
input color using a standard HSL (hue, saturation, lightness)
model of color, an alternative to RGB that is effectively
a Cartesian-to-cylindrical coordinate transformation. Each
HSL triplet has a unique corresponding RGB triplet, and
vice versa.

We fixed the saturation of all input image colors at 0.2
(20%), intentionally making them very weak in comparison
to one another, as we varied the hue and lightness of the color
over their entire range as shown in Fig. 7a. Each point in this
panel corresponds to an HSL triplet which was converted
to RGB and then used as the color of a bar stimulus to the
first-stage color network. Figure7b shows the corresponding
output colors at the position of the hue and lightness of the
input. Note the marked increase in the distinction between
colors: this is effectively an increase in color saturation. Fig-
ure7c shows a cross section through the center of Fig. 7b at
a lightness of 0.5. As hue is varied on the horizontal axis, the
corresponding red, green, and blue input color components
trade offwith one another as dictated by theHSLcolormodel.
The output colors are clearly much better distinguished from
one another than the inputs due to color network lateral inhi-
bition. Note that this effect could not be achieved by simply
rescaling the inputs.

3.4 Visual binding

The second and final stage of the model shown in Fig. 2 took
as input the vector j(t), the combined output of the three
first-stage networks, which contained ten scalar values rep-
resenting refined measures of motion, orientation, and color
in the input visual image sequence. After learning of the con-
nection matrix T was complete, the second stage produced
an output vector o(t) in which a small number of outputs rep-
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Fig. 7 First-stage color refinement. In all panels, the hue of the input
is varied on the horizontal axis. Saturation of all colors was fixed at 0.2.
The vertical axis of panels a and b corresponds to lightness. a Input
colors. Each point in this image represents a color that was input to the
network. b Output colors. Each point in this image corresponds to the
output that was obtained by passing an input of that color through the
color refinement network. cOutput colors plotted as RGBvalues. Hue is
varied on the horizontal axis with saturation fixed at 0.2 and lightness at
0.5, and the corresponding red, green, and blue input color components
are shown (bold lines at center). The correspondingoutputs (larger lobes
in the background) show the clear increase in the difference between
color responses at the output of the network (color figure online)
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resenting the unique common temporal fluctuations found in
the visual input became dominant, while all other outputs
were inhibited.

Due to the fact that the second stage can process any
sequence of visual images, it is simply impossible to present
an exhaustive set of visual stimuli. Instead, we present below
results based on sets of artificial stimuli composed of 50×12-
pixel bars demonstrating the capabilities of the model with
controlled variations and increasing complexity, and finish
with a single demonstration of network operation using a
real-world image sequence collected with a camera.

3.4.1 Response to the reference stimulus

Our reference stimulus, which we will use as a basis for
comparison as we vary stimulus parameters, was composed
of two bars moving on a black background. Bars moved in
a direction orthogonal to their long axis, which means—due
to the convention we have adopted for bar orientation—that
their orientation angle and direction ofmotionwere the same.
A “red” bar (RGB = [0.75 0.1 0.1]) started near the upper left
corner of the image and moved down and right at an angle of
−30◦. Simultaneously, a “green” bar (RGB = [0.1 0.75 0.1])
started near the upper right corner and moved down and left
at an angle of 210◦. Bars moved at a speed of 50 pixels per
second. Both bars moved through the same pattern of mul-
tiplicative horizontal sinusoidal shadowing, which was used
to provide predictable temporal fluctuations. This shadow-
ing had a spatial period of 50 pixels per cycle, a mean value
of 0.5, and an amplitude of 0.25. The relative phase of the
temporal fluctuations generated by these two bars as they
moved through the shadow was not chosen to be any particu-
lar value, but bar fluctuations were never perfectly in phase,
nor precisely quadrature phase or counter-phase. So that we
could use a small image resolution and still experiment with
training the network over long periods of time, bars wrapped
around toroidally to reenter on the opposite side as they left
the image, thus creating an arbitrarily long image sequence.
The results of training the second-stage network with this
two-bar stimulus are detailed in Fig. 8.

Figure8a shows the time evolution of network outputs for
the first 10 s of training. Since the two bars presentedwere red
and green, it is not surprising that the red and green outputs
came to dominate all others, and by the end of the period
shown had come to inhibit all other outputs. The number of
outputs which are not inhibited corresponds to the number of
objects present in the image, whereas the sinusoidal patterns
revealed by the output neurons are the patterns of shadow
through which the two bars moved.

Figure8b and c shows the time evolution of inhibitory
weights from columns 8 (red) and 9 (green) of the weight
matrix T , representing inhibition from neurons 8 and 9 to all
other neurons. Note that connection weights have not pre-

cisely stabilized; rather, the temporal mean of each weight
over the period of input fluctuation has come to a stable value.
The other neurons to which each neuron developed inhibi-
tion are those with which that neuron had common temporal
fluctuations. Thus the pattern of inhibitory weights in each
column represents the visual features of each object. This
is clarified in Fig. 8d and e, which respectively show the
final raw and thresholded weight matrix T . The fact that
this weight matrix is asymmetric, showing clear patterns of
column rather than row inhibition, is due to the asymmet-
ric activation functions described in Sect. 2.2.2. Since small
weights have little effect on the network output, further fig-
ures only show thresholded weight matrices.

The number of objects and their characteristics can be
clearly discerned from Fig. 8e. Based on this matrix, two
objects were present. The first was red, got a moderate,
roughly equal response from both 0◦ and 120◦ orientation
filters, and movement to the right was strongly indicated
with a less prominent downward component. Referring to
Fig. 6, this orientation response indicates a bar orientation
either between 0◦ and −60◦ or equivalently between 120◦
and 180◦, either of which is correct. From the weight matrix,
the second object was green, at an orientation between 0◦ and
60◦ (or equivalently between 180◦ and 240◦), and moving to
the left with a less prominent downward component. Owing
to the direction of motion of both bars being less than 45◦
from horizontal, the downward component of motion from
each bar was weaker in the inputs than the leftward and right-
ward motion components, and is thus properly represented
by the weight matrix.

Although we show results with the learning rate γ2 set
to a small value of 0.5 to allow detailed scrutiny of the
development of network weights, a weight matrix correctly
representing the objects in the input imagery can be stably
learned with values of γ2 more than 10 times larger (data not
shown). A disadvantage that accompanies the higher speed
of this learning is an increase in the amplitudes of the oscilla-
tions ofweights shown in Fig. 8b,which nonetheless stabilize
in temporal average to the values shown.

One might reasonably question if the first-stage networks
are contributing anything to the operation of the model, and
so to test this question, we trained the first-stage networks
only to a maximum eigenvalue of 0.1, as compared to our
usual standard of 0.9 (refer to Sect. 2.3). This resulted in
very weak inhibition in the first-stage connection matrices,
and thus first-stage outputs j(t) were very nearly equal to
inputs i ′(t). Figure9 shows the time course of second-stage
networkoutputs in response to exactly the same stimulus used
to generate the data shown in Fig. 8. Comparing Figs. 8a and
9, second-stage network learning is clearly retarded by a lack
of sensory refinement in the first stage, and thus the first-stage
networks do indeed provide an essential computation to the
model.

123



198 Biol Cybern (2017) 111:185–206

0 1 2 3 4 5 6 7 8 9 10
Time since start of stage 2 training (s)

-1.5

-1

-0.5

0

0.5

1

1.5

S
ta

ge
 2

 o
ut

pu
ts

Left
Right
Down
Up

Red
Green
Blue

0
60
120

o

o
o

0 2 4 6 8 10 12 14
Time since start of stage 2 training (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
ei

gh
ts

 fr
om

 c
ol

um
n 

8 
(r

ed
)

0 2 4 6 8 10 12 14
Time since start of stage 2 training (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
ei

gh
ts

 fr
om

 c
ol

um
n 

9 
(g

re
en

)

eulBneerGdeRpUnwoDthgiRtfeL

Each column: weights FROM this neuron

Left

Right

Down

Up

Red

Green

Blue

E
ac

h
 r

o
w

: 
w

ei
g

h
ts

 T
O

 t
h

is
 n

eu
ro

n

eulBneerGdeRpUnwoDthgiRtfeL

Left

Right

Down

Up

Red

Green

Blue

0

60

120

o

o

o

0 60 120o o o

0

60

120

o

o

o

0 60 120o o o

(a)

(b) (c)

(d) (e)

Fig. 8 Measures of the second-stage network, as it trainedwith a visual
stimulus comprised of two bars moving through sinusoidal shadow. The
legend at top left identifies traces throughout this and subsequent fig-
ures. a All ten network outputs over time. Training began at time zero.
As training progressed, the red and green outputs remained largely
unchanged, while all other outputs were inhibited. b Evolution of
inhibitory weights from column 8 of the weight matrix T as the net-
work trained, representing inhibition from the “red” neuron to all other
neurons. During training, these weights grew and stabilized, learning
to inhibit other neurons that had similar temporal fluctuations. c Evolu-
tion of inhibitory weights from column 9 of the weight matrix T as the

network trained, representing inhibition from the “green” neuron to all
other neurons. d Final state of the weight matrix T after 15 s of train-
ing. Brighter colors represent larger values, and darker colors smaller
values (maximum value shown is 0.85). It is clear that the strongest
weights are in columns 8 and 9. e The final weight matrix T , after
normalization to its maximum value and removal of weights less than
1/3 of the maximum. Here the patterns of inhibition are quite clear a
Network outputs during learning b Inhibitory weights from neuron 8
(red) c Inhibitory weights from neuron 9 (green) d Raw weight matrix
(e) Thresholded weight matrix (color figure online)
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Fig. 9 Outputs of the second-stage network, as it trained with the same
visual stimulus used in Fig. 8, but with the first-stage network only
trained to a maximum eigenvalue of 0.1. Compared with Fig. 8a, while

the network may be gradually learning the correct solution, its progress
is much slowed by weak inhibition in the first stage

3.4.2 Varying the number of objects

To demonstrate that the second-stage connection matrix and
the number of uninhibited outputs represent the number of
unique objects in the visual input, we varied the number of
bars in the stimulus of Fig. 8. Figure10 shows a comparison
of network outputs and final weight matrices with one, two,
and three-bar visual stimuli.

Figure10a and b show the results of removing the green
bar from the reference stimulus, leaving only the red mov-
ing bar. The red output clearly dominates, and weights in
the “red” column of the weight matrix correctly indicate an
orientation between 0◦ and −60◦, rightward motion, and a
smaller component of downward motion. For comparison,
Fig. 10c and d shows the corresponding data from the refer-
ence stimulus, shown in more detail in Fig. 8, and provide
qualitatively the same data about the red moving bar. Fig-
ure10e and f and shows the results of adding a blue bar
(RGB = [0.75 0.1 0.1], moving directly to the left) to the
reference stimulus for a total of three moving bars. Learn-
ing of this stimulus was slightly more difficult, but with
no changes to parameters, in the end three distinct outputs
came to dominate all others: those outputs corresponding
to red, blue, and green color. The weight matrix in the red
and green columns is qualitatively very similar to that for
the two-bar reference stimulus, with the only significant dif-
ference being a missing representation of orientation 0◦ for
the red bar; this visual feature was common to all three
bars presented, and because the corresponding output was
already inhibited by the green and blue neurons, no inhi-
bition was learned from the red neuron. The weight matrix
column corresponding to blue correctly shows a 0◦ orien-
tation (equivalent to 180◦) and motion to the left with no
other component. Thus the number of bars in the visual
stimulus is evident, along with the unique characteristics of
each.

3.4.3 Varying the mechanism of fluctuations

All visual stimuli shown up to this point have used a mul-
tiplicative sinusoidal shadow pattern to generate common
temporal fluctuations used to bind the characteristics of each
bar together. This has made it easy to discern when the out-
puts have come to represent the hidden fluctuations, but one
might reasonably ask if sinusoidal shadowing is required for
network operation. To address this question, we have varied
the method by which temporal fluctuations are generated,
and the results of these experiments are shown in Fig. 11.
For comparison purposes, Fig. 11a and b again shows the
network outputs and final weight matrix for the reference
stimulus.

Figure11c and d shows network outputs and the weight
matrix for the same pair of red and green moving bars as in
the reference stimulus, but without any pattern of shadows at
all. Rather, each bar oscillated in distance from the simulated
camera (which by perspective projection changed its size in
the image) at a frequency of 1 cycle per second, contracting
from the reference width of 12 pixels at its initial distance to
a minimum width of 9 pixels at its greatest distance, with a
proportional change in length. This regular change in bar size
caused a corresponding fluctuation in all visual submodali-
ties, and the features of the moving bars are learned even
more quickly by the network than while using sinusoidal
shadowing. Despite some minor differences, Fig. 11d shows
qualitatively the same pattern of weights as weight matrix of
Fig. 11b learned from the reference stimulus. Relative to the
reference stimulus, weights for this stimulus to the 60◦ and
120◦ orientations are somewhat stronger, and this is evident
in Fig. 11c in the stronger inhibition of those outputs.

Figure11e and f shows network outputs and the weight
matrix for the samepair of red and greenmoving bars as in the
reference stimulus, but in this instance the bars were overlaid
with a randomly generated multiplicative shadow pattern.
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Fig. 10 Second-stage outputs and weight matrices as the number of
bars in the visual stimulus was varied (top to bottom), with all other
stimulus parameters held constant. The left column (a, c, and e) shows
all ten network outputs as they developed over time. Refer to the upper
left corner of Fig. 8 for a legend to identify each trace. The right col-
umn (b, d, and f) shows the thresholded weight matrices at the end of

training. In all three cases, both network outputs and weight matrices
learn to correctly represent the visual stimulus a Network outputs for
one-bar stimulus b One-bar weight matrix c Network outputs for two-
bar stimulus d Two-bar weight matrix e Network outputs for three-bar
stimulus f Three-bar weight matrix

Prior to the beginning of the simulation, a 500× 500 matrix
of uniformly distributed random numbers was generated and
then convolved twice with a circular 2D Gaussian spatial
low-pass filter with standard deviation σn = 6 pixels. The
resulting dappled unoriented shadow pattern was then scaled
and offset so that, like the sinusoidal shadow patterns, it had
a minimum value of 0.25 and a maximum of 0.75.

The subtle, low-amplitude random temporal fluctuations
caused by the random shadowing made the binding problem
more difficult to solve, and it was necessary to increase the
learning rate to γ2 to 4 from its standard value of 0.5. How-

ever, after training for the same 15-second duration used for
the other stimuli, the red and green outputs had virtually sup-
pressed all others as shown in Fig. 11e, and the network had
reached a final connection matrix state, shown in Fig. 11f,
which is qualitatively identical to the weights learned from
the reference stimulus shown in Fig. 11b.

Taken as a whole, the results of Fig. 11 show that neither
sinusoidal fluctuations nor even shadowing are required for
meaningful second-stage visual binding network operation.
Rather, the network learns based on temporal fluctuations of
any kind that may be available.
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Fig. 11 Second-stage outputs and weight matrices for a two-bar visual
stimulus as the manner of generating temporal fluctuations was varied,
with all other stimulus parameters held constant. The left column of pan-
els shows all ten network outputs as they developed over time. Refer
to the upper left corner of Fig. 8 for a legend to identify each trace.
The right column of panels shows the thresholded weight matrices at
15 s, the time at which training was concluded for each experiment.
The top row (a and b) is data from the reference stimulus, which used
sinusoidal shadowing. In the second row (c and d), no shadowing was
used, but rather the distance of the bars from the simulated camera (and

thus by perspective projection their size in the image) was varied over
time. In the bottom row (e and f), a pattern of multiplicative random
shadow was used. In this case, network outputs are shown for 15 s
due to the increased complexity of the stimulus. However, in all three
cases, the final weight matrix develops a very similar representation of
the visual stimulus a Network outputs with sinusoidal shadow b Sine
shadowweight matrix cNetwork outputs with distance variation dDis-
tance variation weight matrix e Network outputs with random shadow
f Random shadow weight matrix

3.4.4 Visual binding with real-world video

Given the infinite number of possible visual stimuli and the
limited space of any publication,we conclude our experimen-
tal evaluation of the model by using a sequence of images
captured from a video camera. Here we take the opportu-
nity not only to show that the system works with a natural

visual stimulus, but also to demonstrate yet another manner
by which temporal fluctuations may be generated for use in
learning by the visual binding model: appearance and disap-
pearance of an object.

Figure12 shows the results of the network when trained
with a video of a red car passing at moderate speed horizon-
tally from right to left through a brightly sunlit parking lot.
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Fig. 12 Measures of the second-stage network as it trained with a 120
FPS video of a red car moving right to left through the scene. a A
sample 500 × 500 video frame at 1.8 s after the beginning of second-
stage training. b Time evolution of inhibitory weights from column 1
of the weight matrix T as the network trained, representing inhibition
from the “left” neuron to all other neurons. Translucent gray boxes in
this panel and the next indicate when the car was entering the frame
from approximately 0.1–0.6 s after the start of training, and when the
car was leaving the frame at approximately 2.8–3.2 s. Note that most
of the changes in connection weights occurred as the car entered and
left the scene. c Network outputs over the 3.4 s duration of training with

this stimulus. A positive leftwardmotion output clearly dominates early
in training, and becomes the largest negative output as the car leaves.
d Final state of the weight matrix T after 3.4 s of training. Brighter
colors represent larger values, and darker colors smaller values. The
maximum value in this matrix is 0.53. e The weight matrix T after nor-
malization to its maximum value and removal of weights less than 10%
of the maximum. Only one column has nonzero weights, representing
a single object a Sample video frame b Inhibitory weights from neu-
ron 1 (left) c Network outputs during learning d Raw weight matrix e
Thresholded weight matrix (color figure online)
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The videowas takenwith 500×500 frames at 120 frames per
second (FPS) to most closely match our artificially generated
stimuli, all of which were at same image size but generated
at 100 FPS. To better accommodate the higher temporal fre-
quencies in this video, the input high-pass filter time constant
τHI was increased from1.0 to 1.5 s. Similarly, the output high-
pass filter time constant τHO was increased from 0.5 to 0.75 s
(thus maintaining the same ratio of the two time constants
as used for previous experiments). The learning rate γ2 was
increased to 10 in order to learn more quickly.

Although the red car goes behind occluding palm trees as
well as their shadows during the video, its appearance and
disappearance in the visual scene are by far the strongest cues.
Unlike our artificial stimuli, this video was not looped, but
of fixed duration. The video began with 5 s of the parking lot
with no movement other than that of the background (which
included palm tree movement due to wind, minor camera
movements, and minor overall brightness adjustments by the
camera), during which time the visual binding network was
allowed to adapt to the visual input. During the following
3.4 s of video, the red car passed completely across the scene,
entering and leaving the scene in approximately 3 s; this was
the only opportunity for the network to gather information
about the object.

Figure12a shows an example frame from this video. Note
that the car is not only behind a palm tree, but also in its
shadow. Figure12b shows how network weights from the
“left” column developed over time, primarily changing dur-
ing appearance and disappearance of the car. Figure12c
shows all network outputs, with the “left” neuron generat-
ing the largest positive output as the car entered the scene
and the largest negative output as the car left. The car was
the only consistently moving object in the scene, and so its
motion created a strong output. In contrast, there were a huge
variety of orientations and colors already present in the back-
ground, and the car covered very few pixels relative to the
image size, and thus generated weak orientation and color
responses. Figure12d and e respectively shows the raw and
normalized connection weight matrices, revealing that the
network has associated the leftward motion output strongly
with both upward and downward motion, weakly with orien-
tations of 60◦ and 120◦, and weakly with the color red. The
strong weights to upward and downward motion were gen-
erated primarily during exit of the car from the scene. Both
upward and downward motion signals were relatively weak
as the car passed through the frame, and resulted from the
aperture problem. However, both signals decreased simulta-
neously with the strong leftward motion component, leading
to their association. The nearly vertical orientation learned
by the network corresponds to strong vertical components in
the windows and edges of the car.

4 Discussion

Wehave presented a novel neural networkmodel based on an
initial hypothesis of the computations that may be performed
in insect optic glomeruli (Strausfeld and Okamura 2007), a
newly discovered visual processing area just beyond the optic
lobes in insects. Thismodelmerges and extends priorworkby
Hopfield (1991) on modeling of olfactory glomeruli (which
anatomically resemble optic glomeruli) and by Herault and
Jutten (1986) on blind source separation. The basic func-
tion of this model is to create a non-spatial representation
of objects based a wide-field mixture of their time-varying
visual features. This representation implicitly allows a deter-
mination of how many objects are present in a visual image
sequence, and identifies—in the form of an inhibitory con-
nection matrix—the unique visual features of each object
based on common temporal fluctuations.

The present model is organized into two stages containing
four individual recurrent networks, three of which use lateral
inhibition to refine inputs from a single visual submodality
(motion, orientation, and color) and together comprise the
first stage of visual processing, and the last of which com-
bines refined inputs across all visual submodalities to perform
visual binding.

We have demonstrated that the first-stage networks refine
the representation of each submodality individually, that this
refinement has some subtle side effects (in particular, we
showed that refinement of visual motion provides a partial
solution to the aperture problem), and that first-stage process-
ing greatly enhances second-stage learning. The reduction
in redundant information provided by each network—often
interpreted as information maximization—has been pro-
posed as a possible goal of all neural computation (Barlow
2001).

We have shown that the second-stage network is capable
of learning the number of objects in an image sequence and
identifying their individual characteristics using controlled
artificially generated visual stimuli composed of moving
bars, verified that network function is maintained as the
number of bars is varied, and that network function is not
dependent on any particular method of generating temporal
fluctuations. Finally, we have demonstrated successful per-
formance of the visual binding network on a sequence of
real-world images.

The functional limits of this model in representing con-
currently presented objects is related to existing literature on
the limits of blind source separation models, and we explore
these limits in detail in a companion paper (Northcutt and
Higgins 2016), where we also address the consequences of
our alterations to the temporal evolution equation and learn-
ing rule relative to previous work on blind source separation.
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Perhaps the most interesting aspect of the current model
is that the three first-stage networks, which have been char-
acterized as performing sensory refinement, have identical
temporal evolution and learning rules to the second-stage net-
work that performs the apparently dissimilar task of visual
binding. The common function of all four networks is to
“orthogonalize” inputs that have significant overlap, thus
reducing the ambiguity of the inputs. This computation also
makes network outputs more robust to the detailed selectiv-
ity of the inputs: For example, the output of the orientation
refinement network would be little changed if the input ori-
entation filters grew moderately more or less selective.

The present model is comprised of only four networks,
each of which is hypothesized to represent a single optic
glomerulus. This number was arrived at by using three visual
submodalities, and providing to each first-stage network a
vector of inputs created by a full-field spatial sum of all local
detectors for that submodality. While it is fascinating that
the network can learn a high-level representation of objects
in the image even after having completely thrown away all
spatial information, given that optic glomeruli number more
than two dozen in blowflies (Okamura and Strausfeld 2007)
it is more likely that inputs to each glomerulus are not full-
field spatial sums, but rather are integrated over a number of
large, distinct spatial receptive fields so that not all retino-
topic information is discarded. Such a model could easily
incorporate dozens of glomeruli, some of which would refine
wide-field inputs from different submodalities, and others of
which would combine these refined inputs across submodal-
ities to provide object-level information about each local
region of the visual field to higher-level visual processing
areas, maintaining a coarse retinotopy.

Our visual binding network makes use of subtractive inhi-
bition, which makes it analytically tractable and ties it to the
well-known literature on blind source separation. However,
it should be noted that more biophysically realistic divisive
inhibition methods have been proposed in color, orienta-
tion and motion models which have been shown to provide
self-normalization of signals, improve coding efficiency, and
compensate for nonlinearity of input signals (Schwartz and
Simoncelli 2001; Simoncelli and Olshausen 2001). Divi-
sive normalization has been proposed as a canonical neural
computation (Carandini and Heeger 2012) and such neu-
ral circuitry could be key to adaptation and normalization.
Divisive inhibition is an alternative model of inhibition that
should be explored in our recurrent inhibitory networks.

Despite distinct differences in network structure and learn-
ing rules, the presentmodel is related tomany neural network
models of visual binding and attention (Eckhorn et al. 1990;
Engel et al. 1992; Schillen and König 1994; Itti et al. 1998),
and even models of consciousness (Crick and Koch 1990;
Engel and Singer 2001) in that these models all make use
of temporal correlations of elementary features to solve the

binding problem. Many neural network models have been
proposed (Hummel and Biederman 1992; von der Malsburg
1994), which make use of temporal synchrony of neuronal
firings to represent the binding of visual features. While this
mechanism is unlikely to be used in the insect optic lobes
where spiking neurons are relatively rare, support for the idea
of neuronal spike synchrony as a representation for visual
binding in mammalian brains has gathered increasing bio-
logical evidence in recent years (Martin and von der Heydt
2015).

The notion that there may exist a canonical neuronal cir-
cuit which is repeated across many sensory modalities is an
attractive one, and seems quite plausible in the context of
the present model. Given the strong anatomical resemblance
between olfactory and optic glomeruli, and the close relation-
ship of our model of optic glomeruli to models of olfaction
(Hopfield 1991)—and more generally to blind source sep-
aration (Herault and Jutten 1986)—the recurrent inhibitory
neural network, which exhibits lateral inhibition in its sim-
plest form, couldwell be one such canonical neuronal circuit.
It has been demonstrated in a large number of sensorymodal-
ities that this type of network is useful in sensory refinement,
and the present work extends prior work on olfactory visual
binding to include vision as well. Whether such a neuronal
circuit is used in similar ways in other sensory modalities
remains to be seen, but the present results definitively indi-
cate that neuronal organizations based around the “simple”
recurrent inhibitory network, in the presence of appropriate
learning rules, can give rise to surprisingly high-level implicit
representations of sensory information.

Acknowledgements The authors would like to thank the Air Force
Office of Scientific Research for early support of this project with Grant
Number FA9550-07-1-0165, and the Air Force Research Laboratories
for supporting this research to maturity with STTR Phase I Award
Number FA8651-13-M-0085 and Phase II Award Number FA8651-
14-C-0108, both in collaboration with Spectral Imaging Laboratory
(Pasadena, CA).Wewould also like to thank the reviewers, whose input
greatly enhanced this manuscript.

References

Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the
perception of motion. J Opt Soc Am A 2:284–299

Albrecht DG, Geisler WS (1991) Motion selectivity and the contrast-
response function of simple cells in the visual cortex. Vis Neurosci
7(6):531–546

Anderson JA (1995) An introduction to neural networks. MIT Press,
Cambridge

Arnett DW (1972) Spatial and temporal integration properties of units
in first optic ganglion of dipterans. J Neurophysiol 35(4):429–444

BarlowHB (2001) Redundancy reduction revisited. NetwCompNeural
12(3):241–253

Bazhenov M, Stopfer M, Rabinovich M, Abarbanel HD, Sejnowski
TJ, Laurent G (2001) Model of cellular and network mechanisms

123



Biol Cybern (2017) 111:185–206 205

for odor-evoked temporal patterning in the locust antennal lobe.
Neuron 30(2):569–581

Bi GQ, Poo MM (1998) Synaptic modifications in cultured hippocam-
pal neurons: dependence on spike timing, synaptic strength, and
postsynaptic cell type. J Neurosci 18(24):10,464–10,472

Borst A, Egelhaaf M (1989) Principles of visual motion detection.
Trends Neurosci 12(8):297–306

Carandini M, Heeger DJ (2012) Normalization as a canonical neural
computation. Nat Rev Neurosci 13(1):51–62

Cichocki A, Bogner RE, Moszczyński L, Pope K (1997) Modified
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