
Learning Fuzzy Rule-Based Neural Networks

for Function Approximation
1

C. M. Higgins R. M. Goodman

chuck@electra.caltech.edu rogo@caltech.edu

Department of Electrical Engineering, 116-81

California Institute of Technology

Pasadena, CA 91125

Abstract

In this paper, we present a method for the induction of fuzzy logic rules to predict a numerical function

from samples of the function and its dependent variables. This method uses an information-theoretic

approach based on our previous work with discrete-valued data [3]. The rules learned can then be used in

a neural network to predict the function value based upon its dependent variables. An example is shown

of learning a control system function.

1 Introduction

The problem of estimating a function from a set of samples can be solved in a multitude of ways, including

mathematical methods using an explicit model for the system to be learned, and model-free systems such

as neural networks and fuzzy systems. The exibility and wide applicability of model-free systems has led

to wide interest in their use, particularly in learning control system functions. The ability of fuzzy systems

to express arbitrary functions in terms of linguistic rules makes such systems an attractive alternative to

neural network \black boxes," in which the function learned can only be observed through the input/output

relationship.

While there are a large number of methods in existence for the estimation of functions using neural

networks, methods for learning fuzzy rules from data are less well-developed [4,5]. Typically for an industrial

fuzzy control system application, the rules are generated by hand. In this paper, we present a method for

learning fuzzy rules from example data based upon information theory. This method of learning rules from

data has been well-documented on discrete data (see [1,2,3]), and can be simply modi�ed to be used for

the learning of fuzzy rules.

2 Learning Rules from Examples

Given membership functions for the input (dependent) variables and output (function value) set up by the

designer of the system, there are two necessary components of the rule-learning scheme. First, we need a

way to tell which of two rules is the best. Second, we need a way to search the space of all possible rules

in order to �nd the best without simply checking every rule in the search space.

2.1 Ranking Rules

Smyth and Goodman [2] have developed an information-theoretic measure of rule value with respect to a

given discrete example set. This measure is known as the J-measure; de�ning a rule as if y then x where

y is a conjunction of input variable values and x is a value of the output variable, the J-measure can be

expressed as follows:

J = p(y)fp(xjy) log
2
(
p(xjy)

p(x)
) + p(�xjy) log

2
(
p(�xjy)

p(�x)
)g

1This work was supported in part by the Army Research O�ce under contract number DAAL03-89-K-0126, and in part

by DARPA under contract number AFOSR-90-0199.

The probabilities are estimated from relative frequencies counted in the given discrete example set. Thus,

given a rule we can go through an example set, count up matches with the left-hand side, right-hand side,

both left- and right-hand sides, and so forth, to calculate a measure of the goodness of a rule.

In order to rank fuzzy rules, one must simply realize that in the discrete scheme an example either

logically matched or did not match a rule whose value was being calculated. It is a simple extension to say

that for numerical examples a fuzzy rule will match to some degree determined by the minimum membership

in the conjunction being matched with the examples. In this case, the probabilities are calculated from

fuzzy counts of rule matches, but the same counts are made and the calculation proceeds exactly as before.

2.2 Searching for the Best Rules

In [3], we presented an e�cient method for searching the space of all possible rules to �nd the most

representative ones for discrete data sets. The basic idea is that each example is a very speci�c (and

quite perfect) rule. However, this rule is applicable to only one example. We wish to generalize this very

speci�c rule to cover as many examples as possible, while at the same time keeping it as correct as possible.

The J-measure is just the tool for doing this. If we calculate the J-measures of all the rules generated by

removing a single input variable from the very speci�c rule, then we will be able to tell if any of the slightly

more general rules generated from this rule are better. If so, we take the best and continue in this manner

until no more general rule with a higher J-measure exists. When we have performed this procedure on the

very speci�c rule generated from each example (and removed duplicates), we will have a set of rules which

represents the data set. We have shown in previous work that a classi�er can be generated from these rules

to predict the output given the inputs.

In order to use this method for discovering fuzzy rules, we need only say how to generate the very

speci�c rule from each numerical example. This is done by taking the greatest membership in each input

variable. For example, if input variable one is more `low' than `med' or `high', the rule for this example

will say

if input1=low and input2= then output =

The rules are then found exactly as above using the extended J-measure, and a fuzzy system can be used

to predict the output based upon the inputs.

3 Building a Neural Network

Once the rules are learned, the architecture for a neural network to calculate the output variable from the

inputs can be constructed as shown in �gure 1.

Fuzzy Rules

1

2

3

4

5

6
Membership
Functions

Input
Variables

Output
Memberships

Final
Output

Figure 1: Network constructed from fuzzy rules

The input variables come into the �rst layer, which contains nodes which act as membership functions,

responding only in a certain region of the input variable domain, with a degree between zero and one. The

second layer is formed by the rules themselves. The nodes in this layer perform the fuzzy AND operation,

computing a minimum of their inputs. The third layer contains a node for each output fuzzy set { these

nodes gather the total weight from all the rules that the output is in that fuzzy set. Finally, the last layer

contains a single node which performs a centroid defuzzi�cation [4] of the outputs. This node normalizes

the weights from the previous layer and weights them with the centers of the output membership functions

to calculate the actual output.

4 Experimental Results

4.1 Function Approximation Experiments

In this section, we will show a simple function approximation experiment that demonstrates learning a

two-dimensional function. The example function to be learned is a pyramid. This function depends on

both the x and y coordinates. The membership functions are shown in �gure 3. Samples of the function

distributed evenly over the whole input space were presented to the learning system. The learned rules,

also shown in �gure 3, say that the output should be low except when both inputs are medium. This

causes a central peak in the response which is quite similar to the desired response.

4.2 A Control System Experiment

While the above example is somewhat illustrative of how the system works, it is not of su�cient di�culty

to be interesting to the practical reader. To address a more real-world problem, we shall describe the

experiment of learning a system which keeps a radio-controlled car going at the same speed in a circle.

That is, we shall describe the learning of a a \cruise control" system. A picture of the vehicle used can be

found in �gure 2.

Figure 2: Experimental Vehicle

We began this experiment by designing a PD controller to solve this problem, and then setting up

membership functions (shown in �gure 4) for a fuzzy controller to be learned. The fuzzy controller was

trained on the data shown in the graph in �gure 4 at the bottom left. This data is a single run of the

PD controller, starting at rest and maintaining the desired speed for a short time. The system was given

samples of the velocity of the vehicle, the acceleration of the vehicle, and the resulting PD control output.

The rules learned are shown in �gure 4 at the middle. Also in that �gure are shown the hand-crafted rules

which would make the system perform exactly like the PD controller. We can see from the fuzzy system

response (in �gure 4 at the bottom right) that the system has learned the basic ideas necessary to control

the vehicle. However, the learned controller has more oscillation in speed than desired. This is due to the

fact that it was trained on data which did not show a large response to acceleration. We can see from the

rules that its response to acceleration is less than in the desired rules. This problem could be overcome by

more exhaustive training, covering more completely the space of the function to be approximated.

5 Summary

We have shown a method for learning fuzzy logic rules from numerical samples of a function in such a way

that the function can be approximated by a fuzzy rule-based neural network using the rules. This has been

demonstrated, not only for a `toy' function approximation problem, but for a real control system.

In current research we are learning rule `weights' to optimize the approximation of the learned function

and learning the membership functions directly from the data, making it unnecessary for a system designer

to intervene between the data and the learning system.

References

[1] R. Goodman, C. Higgins, J. Miller, P. Smyth, \Rule-Based Networks for Classi�cation and Probability

Estimation," to appear in Neural Computation.

[2] P. Smyth and R. Goodman, \An Information-Theoretic Approach to Rule Induction in Databases," to

appear in IEEE Transactions on Knowledge and Data Engineering.

[3] C. M. Higgins and R. M. Goodman, \Incremental Learning using Rule-Based Neural Networks," Pro-

ceedings of the International Joint Conference on Neural Networks, vol. 1, 875-880, July 1991.

[4] B. Kosko, Neural Networks and Fuzzy Systems, Prentice Hall, Englewood Cli�s, NJ, 1992.

[5] C.-T. Lin and C. S. G. Lee, \Neural-Network-Based Fuzzy Logic Control and Decision System," IEEE

Transactions on Computers, vol. 40, 1320-36, December 1991.

1.0

Low High

0 50 100

Med

Y−Coordinate

1.0

X−Coordinate

Low High

0

Med

40 80

1.0

Low High

0 f(X,Y)50

Membership Functions

1 IF y-coord=low THEN f(x,y) low

2 IF x-coord=low THEN f(x,y) low

3 IF x-coord=med AND y-coord=med THEN f(x,y) high

4 IF y-coord=high THEN f(x,y) low

5 IF x-coord=high THEN f(x,y) low

Learned rules

2

4

6

8

10

2

4

6

8

0

20

40

2

4

6

8

10

2

4

6

8

0

20

40

2

4

6

8

10

2

4

6

8

0

20

40

2

4

6

8

10

2

4

6

8

0

20

40

Left: Desired Response, Right: Learned Response

Figure 3: Pyramid Function Approximation

1.0

0 Acceleration−5 5

AccelDecel

1.0

0

Neg Sm Neg

Zero

Sm Pos Pos

−0.01 0.01 0.3−0.3 Change in
Motor Voltage

1.0

0−20 20

Too Slow Too Fast

Velocity

Membership Functions

DESIRED RULES:

1. IF velocity = too_slow THEN output = sm_pos

2. IF velocity = too_fast THEN output = sm_neg

3. IF acceleration = accel THEN output = neg

4. IF acceleration = decel THEN output = pos

LEARNED RULES:

1. IF velocity=too_slow THEN output=sm_pos

2. IF velocity=too_slow AND acceleration=decel THEN output=sm_pos

3. IF velocity=too_fast AND acceleration=accel THEN output=sm_neg

4. IF velocity=too_fast AND acceleration=decel THEN output=sm_neg

5. IF acceleration=accel THEN output=sm_neg

6. IF acceleration=decel THEN output=sm_pos

Desired and Learned Rules

Left: Hand-crafted PD Controller, Right: Learned Fuzzy Controller

Figure 4: Control Example { Radio-Controlled Car

