
Learning Fuzzy Rule-Based Neural

Networks for Control

Charles M. Higgins and Rodney M. Goodman
Department of Electrical Engineering, 116-81

California Institute of Technology
Pasadena, CA 91125

Abstract

A three-step method for function approximation with a fuzzy sys-
tem is proposed. First, the membership functions and an initial
rule representation are learned; second, the rules are compressed
as much as possible using information theory; and �nally, a com-
putational network is constructed to compute the function value.
This system is applied to two control examples: learning the truck
and trailer backer-upper control system, and learning a cruise con-
trol system for a radio-controlled model car.

1 Introduction

Function approximation is the problem of estimating a function from a set of ex-
amples of its independent variables and function value. If there is prior knowledge
of the type of function being learned, a mathematical model of the function can be
constructed and the parameters perturbed until the best match is achieved. How-
ever, if there is no prior knowledge of the function, a model-free system such as a
neural network or a fuzzy system may be employed to approximate an arbitrary
nonlinear function. A neural network's inherent parallel computation is e�cient
for speed; however, the information learned is expressed only in the weights of the
network. The advantage of fuzzy systems over neural networks is that the informa-
tion learned is expressed in terms of linguistic rules. In this paper, we propose a
method for learning a complete fuzzy system to approximate example data. The
membership functions and a minimal set of rules are constructed automatically from
the example data, and in addition the �nal system is expressed as a computational

1.0

0

Neg Sm Neg

Zero

Sm Pos Pos

M
em

be
rs

hi
p

V
al

ue

−5.0 −1.0 1.0 5.0

Variable Value

Figure 1: Membership function example

(neural) network for e�cient parallel computation of the function value, combining
the advantages of neural networks and fuzzy systems. The proposed learning algo-
rithm can be used to construct a fuzzy control system from examples of an existing
control system's actions.

Hereafter, we will refer to the function value as the output variable, and the inde-
pendent variables of the function as the input variables.

2 Fuzzy Systems

In a fuzzy system, a function is expressed in terms of membership functions and
rules. Each variable has membership functions which partition its range into over-
lapping classes (see �gure 1). Given these membership functions for each variable,
a function may be expressed by making rules from the input space to the output
space and smoothly varying between them.

In order to simplify the learning of membership functions, we will specify a number
of their properties beforehand. First, we will use piecewise linear membership func-
tions. We will also specify that membership functions are fully overlapping; that is,
at any given value of the variable the total membership sums to one. Given these
two properties of the membership functions, we need only specify the positions of
the peaks of the membership functions to completely describe them.

We de�ne a fuzzy rule as if y then X, where y (the condition side) is a conjunction
in which each clause speci�es an input variable and one of the membership func-
tions associated with it, and X (the conclusion side) speci�es an output variable
membership function.

3 Learning a Fuzzy System from Example Data

There are three steps in our method for constructing a fuzzy system: �rst, learn the
membership functions and an initial rule representation; second, simplify (compress)
the rules as much as possible using information theory; and �nally, construct a
computational network with the rules and membership functions to calculate the
function value given the independent variables.

3.1 Learning the Membership Functions

Before learning, two parameters must be speci�ed. First, the maximum allowable
RMS error of the approximation from the example data; second, the maximum
number of membership functions for each variable. The system will not exceed
this number of membership functions, but may use fewer if the error is reduced
su�ciently before the maximum number is reached.

3.1.1 Learning by Successive Approximation to the Target Function

The following procedure is performed to construct membership functions and a set
of rules to approximate the given data set. All of the rules in this step are cell-
based, that is, they have a condition for every input variable; there is a rule for
every combination of input variables (cell).

We begin with input membership functions at input extrema. The closest example
point to each \corner" of the input space is found and a membership function for
the output is added at its value at the corner point. The initial rule set contains
a rule for each corner, specifying the closest output membership function to the
actual value at that corner.

We now �nd the example point with the greatest RMS error from the current model
and add membership functions in each variable at that point. Next, we construct
a new set of rules to approximate the function. Constructing rules simply means
determining the output membership function to associate with each cell. While
constructing this rule set, we also add any output membership functions which are
needed. The best rule for a given cell is found by �nding the closest example point
to the rule (recall each rule speci�es a point in the input space). If the output
value at this point is \too far" from the closest output membership function value,
this output value is added as a new output membership. After this addition has
been made, if necessary, the closest output membership function to the value at the
closest point is used as the conclusion of the rule. At this point, if the error threshold
has been reached or all membership functions are full, we exit. Otherwise, we go
back to �nd the point with the greatest error from the model and iterate again.

3.2 Simplifying the Rules

In order to have as simple a fuzzy system as possible, we would like to use the min-
imum possible number of rules. The initial cell-based rule set can be \compressed"
into a minimal set of rules; we propose the use of an information-theoretic algorithm
for induction of rules from a discrete data set [1] for this purpose. The key to the
use of this method is the interpretation of each of the original rules as a discrete
example. The rule set becomes a discrete data set which is input to a rule-learning
algorithm. This algorithm learns the best rules to describe the data set.

There are two components of the rule-learning scheme. First, we need a way to tell
which of two candidate rules is the best. Second, we need a way to search the space
of all possible rules in order to �nd the best rules without simply checking every
rule in the search space.

3.2.1 Ranking Rules

Smyth and Goodman[2] have developed an information-theoretic measure of rule
value with respect to a given discrete data set. This measure is known as the
j-measure; de�ning a rule as if y then X, the j-measure can be expressed as follows:

j(Xjy) = p(Xjy) log2(
p(Xjy)

p(X)
) + p(�X jy) log2(

p(�X jy)

p(�X)
)

[2] also suggests a modi�ed rule measure, the J-measure:

J(Xjy) = p(y)j(Xjy)

This measure discounts rules which are not as useful in the data set in order to
remove the e�ects of \noise" or randomness. The probabilities in both measures
are computed from relative frequencies counted in the given discrete data set.

Using the j-measure, examples will be combined only when no error is caused in the
prediction of the data set. The J-measure, on the other hand, will combine examples
even if some prediction ability of the data is lost. If we simply use the j-measure
to compress our original rule set, we don't get signi�cant compression. However,
we can only tolerate a certain margin of error in prediction of our original rule set
and maintain the same control performance. In order to obtain compression, we
wish to allow some error, but not so much as the J-measure will create. We thus
propose the following measure, which allows a gradual variation of the amount of
noise tolerance:

L(Xjy) = f (p(y); �) j(Xjy) where f(x; �) =
1� e��x

1� e��

The parameter � may be set at 0+ to obtain the J-measure since f(x; 0+) = x or
at 1 to obtain the j-measure, since f(x;1) = 1 (x > 0). Any value of � between
0 and 1 will result in an amount of compression between that of the J-measure
and the j-measure; thus if we are able to tolerate some error in the prediction of
the original rule set, we can obtain more compression than the j-measure could give
us, but not as much as the J-measure would require. We show an example of the
variation of � for the truck backer-upper control system in section 4.1.

3.2.2 Searching for the Best Rules

In [1], we presented an e�cient method for searching the space of all possible rules to
�nd the most representative ones for discrete data sets. The basic idea is that each
example is a very speci�c (and quite perfect) rule. However, this rule is applicable
to only one example. We wish to generalize this very speci�c rule to cover as many
examples as possible, while at the same time keeping it as correct as possible. The
goodness-measures shown above are just the tool for doing this. If we calculate the
\goodness" of all the rules generated by removing a single input variable from the
very speci�c rule, then we will be able to tell if any of the slightly more general
rules generated from this rule are better. If so, we take the best and continue in this
manner until no more general rule with a higher \goodness" exists. When we have
performed this procedure on the very speci�c rule generated from each example
(and removed duplicates), we will have a set of rules which represents the data set.

1

2

3

Lateral inhibitory connections

Input
Membership
Functions

Rules Output
Membership
Functions

Defuzzification

Figure 2: Computational network constructed from fuzzy system

3.3 Constructing a Network

Constructing a computational network to represent a given fuzzy system can be
accomplished as shown in �gure 2. From input to output, layers represent input
membership functions, rules, output membership functions, and �nally defuzzi�ca-
tion. A novel feature of our network is the lateral links shown in �gure 2 between
the outputs of various rules. These links allow inference with dependent rules.

3.3.1 The Layers of the Network

The �rst layer contains a node for every input membership function used in the rule
set. Each of these nodes responds with a value between zero and one to a certain
region of the input variable range, implementing a single membership function.
The second layer contains a node for each rule { each of these nodes represents
a fuzzy AND, implemented as a product. The third layer contains a node for
every output membership function. Each of these nodes sums the outputs from
each rule that concludes that output fuzzy set. The �nal node simply takes the
output memberships collected in the previous layer and performs a defuzzi�cation
to produce the �nal crisp output by normalizing the weights from each output node
and performing a convex combination with the peaks of the output membership
functions.

3.3.2 The Problem with Dependent Rules and a Solution

There is a problem with the standard fuzzy inference techniques when used with
dependent rules. Consider a rule whose conditions are all contained in a more spe-
ci�c rule (i.e. one with more conditions) which contradicts its conclusion. Using
standard fuzzy techniques, the more general rule will drive the output to an inter-
mediate value between the two conclusions. What we really want is that a more
general rule dependent on a more speci�c rule should only be allowed to �re to
the degree that the more speci�c rule is not �ring. Thus the degree of �ring of the
more speci�c rule should gate the maximum �ring allowed for the more general
rule. This is expressed in network form in the links between the rule layer and the
output membership functions layer. The lateral arrows are inhibitory connections
which take the value at their input, invert it (subtract it from one), and multiply
it by the value at their output.

Loading
Dock

Truck and Trailer

Cab
Angle

Truck
Angle Y position

(of truck rear)

Figure 3: The truck and trailer backer-upper problem

4 Experimental Results

In this section, we show the results of two experiments: �rst, a truck backer-upper
in simulation; and second, a simple cruise controller for a radio-controlled model
car constructed in our laboratory.

4.1 Truck and Trailer Backer-Upper

Jenkins and Yuhas [3] have developed by hand a very e�cient neural network for
solving the problem of backing up a truck and trailer to a loading dock. The truck
and trailer backer-upper problem is parameterized in �gure 3.

The function approximator system was trained on 225 example runs of the Yuhas
controller, with initial positions distributed symmetrically about the �eld in which
the truck operates. In order to show the e�ect of varying the number of membership
functions, we have �xed the maximum number of membership functions for the y
position and cab angle at 5 and set the maximum allowable error to zero, thus
guaranteeing that the system will �ll out all of the allowed membership functions.
We varied the maximum number of truck angle membership functions from 3 to 9.
The e�ects of this are shown in �gure 4. Note that the error decreases sharply and
then holds constant, reaching its minimum at 5 membership functions. The Yuhas
network performance is shown as a horizontal line. At its best, the fuzzy system
performs slightly better than the system it is approximating.

For this experiment, we set a goal of 33% rule compression. We varied the parameter
� in the L-measure for each rule set to get the desired compression. Note in �gure 4
the performance of the system with compressed rules. The performance is in every
case almost identical to that of the original rule sets. The number of rules and the
amount of rule compression obtained can be seen in table 1.

4.2 Cruise Controller

In this section, we describe the learning of a cruise controller to keep a radio con-
trolled model car driving at a constant speed in a circle. We designed a simple PD
controller to perform this task, and then learned a fuzzy system to perform the same
task. This example is not intended to suggest that a fuzzy system should replace
a simple PD controller, since the fuzzy system may represent far more complex

a) Control error: final y position b) Control error: final truck angle

 Fuzzy System

R
M

S
 e

rr
or

Number of truck angle membership functions

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

 Compressed
 Cell−based

3 4 5 6 7 8 9

 Fuzzy System

R
M

S
 e

rr
or

Number of truck angle membership functions

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

3 4 5 6 7 8 9

 Compressed
 Cell−based

 Yuhas System
 Yuhas System

Figure 4: Results of experiments with the truck backer-upper

Number of truck angle membership functions
3 4 5 6 7 8 9

Number of Rules Cell-Based 75 100 125 150 175 200 225
Compressed 48 67 86 100 114 138 154

Compression 36% 33% 31% 33% 35% 31% 32%

Table 1: Number of rules and compression �gures for learned TBU systems

functions, but rather to show that the fuzzy system can learn from real control data
and operate in real-time.

The fuzzy system was trained on 6 runs of the PD controller which included runs
going forward and backward, and conditions in which the car's speed was perturbed
momentarily by blocking the car or pushing it. Figure 5 shows the error trajectory
of both the hand-crafted PD and learned fuzzy control systems from rest. The car
builds speed until it reaches the desired set point with a well-damped response, then
holds speed for a while. At a later time, an obstacle was placed in the path of the
car to stop it and then removed; �gure 5 shows the similar recovery responses of
both systems. It can be seen from the numerical results in table 2 that the fuzzy
system performs as well as the original PD controller.

No compression was attempted because the rule sets are already very small.

PD Controller Learned Fuzzy System
Time from 90% error to 10% error (s) 0.9 0.7
RMS error at steady state (uncal) 59 45
Time to correct after obstacle (s) 6.2 6.2

Table 2: Analysis of cruise control performance

3
S

p
e

e
d

 E
rr

o
r

(x
 1

0

)

−1.50

−1.00

−0.50

0.00

0.50

1.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Time (s)

3
S

p
e

e
d

 E
rr

o
r

(x
 1

0

)

−1.50

−1.00

−0.50

0.00

0.50

1.00

0.00 5.00 10.00 15.00 20.00 25.00 30.00

Time (s)

b) Fuzzy Control Systema) PD Control System

Figure 5: Performance of PD controller vs. learned fuzzy system

5 Summary and Conclusions

We have presented a method which, given examples of a function and its inde-
pendent variables, can construct a computational network based on fuzzy logic to
predict the function given the independent variables. The user must only specify
the maximumnumber of membership functions for each variable and the maximum
RMS error from the example data.

The �nal fuzzy system's actions can be explicitly explained in terms of rule �rings.
If a system designer does not like some aspect of the learned system's performance,
he can simply change the rule set and the membership functions to his liking. This
is in direct contrast to a neural network system, in which he would have no recourse
but another round of training.

Acknowledgements

This work was supported in part by Paci�c Bell, and in part by DARPA and ONR
under grant no. N00014-92-J-1860.

References

[1] C. Higgins and R. Goodman, \Incremental Learning using Rule-Based Neural
Networks," Proceedings of the International Joint Conference on Neural Networks,
vol. 1, 875-880, July 1991.

[2] R. Goodman, C. Higgins, J. Miller, P. Smyth, \Rule-Based Networks for Classi-
�cation and Probability Estimation,"Neural Computation 4(6), 781-804, November
1992.

[3] R. Jenkins and B. Yuhas, \A Simpli�ed Neural-Network Solution through Prob-
lem Decomposition: The Case of the Truck Backer-Upper," Neural Computation
4(5), 647-9, September 1992.

