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Abstract Collision avoidance models derived from the
study of insect brains do not perform universally well
in practical collision scenarios, despite the fact that the
insects themselves may perform well in similar situa-
tions. In this paper, we present a detailed simulation
analysis of two well known collision avoidance models
and illustrate their limitations. In doing so, we present a
novel continuous-time implementation of a neuronally-
based collision avoidance model. We then show that
visual tracking can improve performance of these mod-
els by allowing an relative computation of the distance
between the obstacle and the observer. We compare the
results of simulations of the two models with and with-
out tracking to show how tracking improves the abil-
ity of the model to detect an imminent collision. We
present an implementation of one of these models pro-
cessing imagery from a camera to show how it performs
in real-world scenarios. These results suggest that in-
sects may track looming objects with their gaze.

Keywords Insect vision, collision avoidance, compu-
tational modeling, computer vision

1 Introduction

Collision avoidance is a behavior elicited in many or-
ganisms when an object looms in the visual field. In
insects, this phenomenon has been studied extensively
at both the neuronal and the behavioral levels (Rind,
1984; Borst and Bahde, 1986; Hatsopoulos et al., 1995;
Rind and Bramwell, 1996; Sun and Frost, 1998; Laurent
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and Gabbiani, 1998; Tammero and Dickinson, 2002).
Insects are able to turn their head relative to the tho-
rax in flight, and considerable evidence suggests that
they use head movements to enhance the information
they get from the visual scene (Wertz et al., 2009; Boed-
deker et al., 2010), although it is not theoretically nec-
essary (Hyslop and Humbert, 2010). It has long been
known (Land, 1973) that flies move their head to sta-
bilize the visual scene, and can make rapid saccadic
changes in fixation. This visual stabilization has more
recently been shown to include both roll and yaw move-
ments (Schilstra and van Hateren, 1998; van Hateren
and Schilstra, 1999). van Hateren and Schilstra (1999)
also showed that saccadic turns of the head lag slightly
behind turns of the thorax in flight, thus minimizing
the time of the saccade. (van Hateren et al., 2005) have
suggested that responses of the H1 visual motion sensi-
tive interneuron are enhanced by this visual stabiliza-
tion between saccades. Similar stabilization has been
demonstrated in honeybees (Boeddeker and Hemmi,
2010). None of these experiments have observed insects
in flight actively directing their gaze to specific objects.
However, biological models of collision avoidance are
often evaluated without any accompanying head move-
ments. Further, since none of these experiments placed
insects in looming scenarios, it is unknown whether in-
sects track looming objects with their gaze in such sce-
narios.

Computational models of insect collision avoidance
can be broken into two broad classes: those based on a
matched filter for optical flow, and those not employing
direction selective elements. In this paper, we evaluate
representatives from both classes of collision avoidance
models while tracking the looming object.

Collision avoidance has also, of course, been stud-
ied outside the context of biological models. Optical
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flow, which is defined as the local velocity field of point
objects in a scene, has been argued to be a good mech-
anism to determine the motion of rigid objects (Horn,
1986; Fermuller and Aloimonos, 1992). However, the
computation of optical flow is by itself an ill-posed prob-
lem and simplifying assumptions, such as smoothness of
the intensity pattern, are required to solve the math-
ematical equations (Horn and Schunck, 1981). Several
researchers have shown that it is possible to navigate
without collision by using optical flow with visual track-
ing for a binocular observer (Bandopadhay and Bal-
lard, 1991; Aloimonos et al., 1988). Fermuller and Aloi-
monos (1992) have developed a collision avoidance al-
gorithm for an active monocular observer using nor-
mal flow (optical flow normal to the boundaries of an
object). However, for this algorithm to work the nor-
mal flow must be computed at each instant of time,
which is computationally intensive for most realistic
scenarios. Spatio-temporal frequency based algorithms,
on the other hand, are mathematically stable computa-
tionally efficient methods that can be used to compute
local motion at each point in a scene (Verri and Poggio,
1989; Lindemann et al., 2005). It has been shown that
spatio-temporal frequency based methods such as the
Hassenstein-Reichardt (HR) model (Hassenstein and Re-
ichardt, 1956; Reichardt, 1961) may also be used for es-
timating the qualitative properties of motion from the
real world, such as the focus of expansion, or discontinu-
ities due to relative motion of an object with respect to
its background (Verri and Poggio, 1989). In some cases,
including collision detection, these qualitative proper-
ties may be more effective than quantitative optical flow
methods to determine the trajectory of an approaching
obstacle.

The first model of collision avoidance that we have
considered is based on the response of large visual in-
terneurons in the optic lobes of the fly. These neurons
have been suggested to supply visual cues for the con-
trol of head orientation, body posture, and flight steer-
ing (Borst, 1990; Krapp et al., 1998). The model is
based on a matched filter approach (Franz and Krapp,
1998), whereby motion information is filtered by a set
of neurons to extract information for specific tasks, in-
cluding collision avoidance. This model is similar to
optical-flow based models that compute expansion by
summing the outward components of the flow vectors
(Borst and Bahde, 1986). A matched filter based col-
lision avoidance model was proposed by Tammero and
Dickinson (2002) based on their behavioral studies of
fruit flies. This hypothetical model of behavioral data
does not incorporate specific visual interneurons. In the
case of this model, the expansion is computed by sum-
ming the outward components of motion computed by

HR type motion detectors. We refer to this model as the
Spatio-Temporal Integration (STI) model and describe
it in Section 2.1.

The second model that we have considered is based
on two of the most studied neurons mediating collision
avoidance in insects. These are the Lobula Giant Move-
ment Detector (LGMD) and the Descending Contralat-
eral Movement Detector (DCMD) (Rind, 1984; Milde
and Strausfeld, 1990; Rind and Simmons, 1992; Hat-
sopoulos et al., 1995). Interestingly, neurons with very
similar responses have recently been recorded in crabs
(Hemmi and Tomsic, 2011). Rind and Bramwell (1996)
have modeled the response of the LGMD neuron us-
ing a neural network. We refer to this model as the
Rind model and describe it in Section 2.2. A competing
mathematical model based on the response of the same
two neurons has been described by Laurent and Gab-
biani (1998). We refer to this model as the η-function
model, and compare it to the Rind model in Section
2.2.

The STI and the Rind models are based on data
from a limited set of biological experiments that do not
account for some critical scenarios that expose their
limitations. In this paper, we present simulation analy-
ses of the STI and the Rind models for a varied set of
collision and non-collision scenarios to show their lim-
itations and propose visual tracking as a solution to
these limitations. We also present a camera-based phys-
ical implementation of the STI model, and compare the
performance of the model with and without tracking.

2 Models of Collision Avoidance

2.1 The Spatio-Temporal Integration model

A model for collision avoidance and the landing re-
sponse in the fruit fly Drosophila melanogaster was pro-
posed by Tammero and Dickinson (2002). This model
is an elaboration of a scheme based on the spatial and
temporal integration of small-field motion units, pro-
posed by Borst and Bahde (1986), to explain the land-
ing response of the housefly. Borst and Bahde stud-
ied the stereotypical leg extension response of the fly
while presenting an expanding visual stimulus. They
concluded that when the expansion output exceeds a
threshold, the fly extends its legs to land. Tammero
and Dickinson have elaborated this model to account
for both landing and collision avoidance. Tammero and
Dickinson’s model consists of an array of HR correlation
based motion detectors that compute a qualitative rep-
resentation of the optical flow field (Verri and Poggio,
1989). In a two dimensional (2D) version of this model,
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Fig. 1 Spatio-Temporal Integration model. The input layers
implement an array of HR motion detector units. PR indi-
cates a photoreceptor, LPF a temporal low-pass filter, and
HPF a temporal high-pass filter. The motion output from
the HR units is processed by an expansion filter which com-
bines motion outputs along the horizontal and vertical axes
to generate motion sensitivity in a radially outward direction.

the outputs from individual HR detectors in each sub-
field are filtered into rightward, leftward, upward, and
downward motion components. These motion compo-
nents are then spatially combined such that the output
in each of the four quadrants represents a net outward
motion or expansion. A hardware implementation of
this model has been shown to avoid collisions in many
cases (Harrison, 2005); however, the results have not
been analyzed to determine what type of collision sce-
nario leads to their failure. Reiser and Dickinson (2003)
have also implemented this model in a robotic fruit fly.

For this study, the STI model was implemented for
a simulated insect with a 2D sensor of angular extent
180◦ in both azimuth and elevation (see Figure 1). The
sensor plane was divided into four quadrants and the
motion vectors pointing in the outward directions in
each quadrant were summed together (for example, up
and right motion components in the top-right quad-
rant). The total expansion output (E, “Exp Filter” in
Figure 1) was computed as follows:

E =
∑

top−left

√
neg(Mx)2 + pos(My)2

+
∑

top−right

√
pos(Mx)2 + pos(My)2

+
∑

bottom−right

√
pos(Mx)2 + neg(My)2

+
∑

bottom−left

√
neg(Mx)2 + neg(My)2 (1)

where pos() and neg() are functions that respec-
tively pass the positive and negative values of their in-
puts unchanged and return zero for inputs of the oppo-
site sign. Mx and My are 2D matrices of motion outputs
along the horizontal (x) and vertical (y) directions of
the sensor plane, respectively. Components of Mx were
positive when the local motion was left to right and
negative otherwise. Components of My were positive
when the local motion was bottom to top and negative
otherwise.

2.2 A continuous-time implementation of the Rind
model

Rind and Bramwell (1996) proposed a neural network
model of the LGMD and DCMD neurons in a locust in
response to looming visual stimuli. The DCMD neuron
has a one-to-one synaptic connection with the LGMD
neuron such that a spike in LGMD elicits a spike in
DCMD (Rind, 1984). The responses of these neurons
have been well characterized (Simmons and Rind, 1992;
Hatsopoulos et al., 1995). Intracellular electrophysio-
logical data recorded from the DCMD neuron show that
it responds strongly to expanding stimuli, but not to
sustained motion. Rind and Simmons (1992) recorded
extracellularly from the DCMD neuron and reported
that it also responds to novel initiation of motion, but
not to slow lateral motion. Based on these recordings,
Rind and Bramwell (1996) proposed a neural network
that models the activity of the LGMD neuron. This
model has discrete-time components with ON/OFF type
photodetector units at the input level. The output of
the photoreceptor units interact with a delayed output
of their lateral neighbors that have an exponentially
decaying persistence response. Fixed-time delays and
hand-tuned persistence parameters are key components
in the original model.

The η-function model (Laurent and Gabbiani, 1998)
differs from the Rind model in many ways, even though
both are based on the response of the same LGMD-
DCMD neurons. Most crucially, the η-function model
requires computing the size of the obstacle and its rate
of change, which requires a visual subsystem capable of
extracting this information from the visual scene. The
size information can be accurately estimated only by
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Fig. 2 Continuous-time implementation of the Rind model.
The photoreceptor layer is a combination of phototransducing
units (PR) and a high-pass filter stage (HPF) which replaces
the edge detector in the original model. The second layer has
two low-pass filtering units for excitatory (LPFE) and in-
hibitory (LPFI) units, each output of which is rectified. The
third layer is a summation layer (S) that receives positive in-
put from the LPFE unit and negative input from 8 neighbor-
ing LPFI units (not all connections shown). A feed-forward
inhibition unit (F) aggregates the high-pass filter output from
all the photoreceptor units. The fourth layer has an LGMD
unit which receives positive input from all the S units and a
negative input from the F unit.

distinguishing the object from the background which
leads us to the very difficult problem of visual segmen-
tation. Biological visual segmentation algorithms have
been proposed (Koch et al., 1986) and their electronic
implementations have also been fabricated (Stocker, 2004).
However, these are complex solutions and require sig-
nificant processing hardware and computational time.
Due to the complexity of implementing this visual sub-
system, we have therefore not pursued the η-function
model further.

We have implemented a novel continuous-time ver-
sion of the Rind model by replacing the persistence pa-
rameters and fixed-time delays with first order low-pass
filters (see Figure 2). To make the model more bio-
logically realistic, the original model’s ON/OFF type
photodetectors were replaced by a photoreceptor with
a continuous response to light intensity cascaded with
a temporal high-pass filter (PR and HPF in the fig-

ure). This edge information is passed into the excita-
tory and inhibitory units. The time-constant of the ex-
citatory units (LPFE, 12.3 ms) is smaller than that of
the lateral inhibitory units (LPFI, 55 ms), with these
values being taken from the original Rind model. The
low-pass filter units used in place of fixed delays have
an added advantage. The response of the low-pass fil-
ter persists for some time based on its time-constant.
This eliminates the need for artificially including per-
sistence in the excitatory and inhibitory nodes as in
the case of the original Rind model. We introduced a
rectification stage after the excitatory (LPFE) and in-
hibitory (LPFI) units, thus making the output of the
second layer strictly positive, a requirement in the orig-
inal Rind model. A summation stage (S) receives inputs
from one excitatory and eight adjacent inhibitory units,
all nearest neighbors in the rectangular lattice. A feed-
forward inhibition unit (F) was implemented as the sum
of all the HPF units and was always active. The out-
put from all the summation units and the feed-forward
inhibition unit was pooled by the LGMD unit.

The responses of our continuous-time model are vir-
tually identical to the original Rind model (data not
shown), although our version is much simpler to imple-
ment. Like the original model, its response is dependent
on the size of the approaching object and it responds
selectively to approaching obstacles over receding ones.
We have not included next-nearest neighbor induced
lateral inhibition in our model, a feature in some im-
plementations of the Rind model, because in our sim-
ulations this inhibition did not seem to have any sig-
nificant affect on the response of the model. A detailed
comparison of our implementation versus the original
model can be found elsewhere (Pant, 2007).

3 Collision avoidance in a mathematical
framework

In this section, we consider the collision avoidance prob-
lem from a mathematical perspective. In the real world,
the trajectory charted by an obstacle on a collision
course is three-dimensional (3D). However, the image
that is processed by the insect visual system is only
a two-dimensional (2D) projection of the real world.
While the motion of the obstacle in the real world is
described by three cartesian directions x, y, and z, the
motion projected on the photoreceptors is possible only
along two of the three directions (say, x and y). The mo-
tion along the third direction (the z axis) is not explic-
itly resolvable by processing a sequence of two dimen-
sional images (Duric et al., 1999). However, the relative
distance of the objects in a scene may be computed di-
rectly by using non-directional speed and motion par-
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Fig. 3 2D projection of a 3D object. The point P in the real
environment is projected as p on the sensor array.

allax (Bruckstein et al., 2005). In this section, we show
how to relate the response of the collision avoidance
models to the distance from the obstacle through track-
ing. This is inspired by the active vision approach used
in computer vision (Bajcsy, 1985).

3.1 Motion under 2D perspective projection

In a biological system, the visual input is usually mod-
eled as a 2D projection of the real world onto an array
of photoreceptors. The intensity map is then processed
by successive stages of the visual system to interpret
the scene (Rind and Bramwell, 1996; Franz and Krapp,
2000). The same is true for most optical-flow/motion-
flow based computer vision algorithms (Horn, 1986; Fer-
muller and Aloimonos, 1992). In this section, we present
a mathematical framework to analyze how a model that
only has access to the intensity information extracts pa-
rameters of object motion like speed and distance. As
shown in Figure 3, the sensors are arranged in a 2D
plane AA′BB′. Under perspective projection (Foley et
al., 1995) on a plane at a distance f from the origin,
the motion at a point P (Xa,Ya,Za) with translational
speed S (VX ,VY ,VZ), and no rotational motion compo-
nent, is represented by the point p (x,y) with speed s

(vx,vy), where

x =
Xaf

Za
(2)

VX

VY

VZ

L

VX/Za -xVZ/Za = b1

VY/Za - yVZ/Za = b2

Fig. 4 Geometrical interpretation of an underdetermined
system of equations. The planes parallel to the x-z and the
y-z surfaces intersect each other at a line L.

y =
Yaf

Za
(3)

Without loss of generality, we can choose f = 1 as
the focal length of our imaging system. Then, the veloc-
ity at point p (x,y) as computed by differentiating x and
y and substituting Xa and Ya according to Equations
2 and 3 is:

vx =
dx

dt
=

d

dt

(
Xa

Za

)
=
VX

Za
− xVZ

Za
(4)

vy =
dy

dt
=

d

dt

(
Ya

Za

)
=
VY

Za
− yVZ

Za
(5)

Thus, we find that the speed of the projected point p
on the sensor array is a combination of the speed in the
respective cartesian (x or y) direction and the distance
of the object normal to the sensor plane (z direction).
These equations represent an underdetermined system
with an infinite number of possible solutions. This be-
comes clear by looking at the geometrical interpretation
of Equations 4 and 5. These equations represent planes
in the (VX ,VY ,VZ) coordinate system (see Figure 4).
The solution to the system of equations is represented
by the intersection of the two planes: a line L. Thus, mo-
tion along the x and y directions (parallel to the sensor
plane) is indistinguishable from the motion along the z
direction (approach).

3.2 Tracking and collision avoidance

Many researchers in the field of computer vision have
argued how an ‘active’ observer may be able to tackle
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Fig. 5 Active Observer with two degrees of freedom, shown
by the arrows along the horizontal and vertical axis. The vi-
sual sensor may be rotated about either axis to actively track
the object in its visual field.

some of the problems we have discussed in the previous
section (Bajcsy, 1985; Aloimonos et al., 1988). An ac-
tive observer is an observer that is free to move its ‘gaze’
in order to track (or fixate on) some feature or object
in its visual field. In closely related work, Fermuller and
Aloimonos (1992) showed how fixating an object may
be used to simplify the computation of time to colli-
sion, a parameter which can also be used for obstacle
avoidance. Figure 5 shows an active observer that has
two degrees of freedom about its vertical and horizon-
tal axes. Such an observer is able to rotate its sensor
plane such that it may keep an object directly in front
of it. As shown in Figure 5, this may be accomplished
by keeping the line passing through the center of the
sensor plane (P ) and the center of mass of the object
(P ′) normal to the sensor plane.

Tracking an object with the gaze significantly af-
fects the pattern of optical flow experienced by the ob-
server, and this effect has been studied in detail. Eck-
ert and Buchsbaum (1993) demonstrated that track-
ing an object greatly reduces the variance of optical
flow at the point of tracking while generally leading to
increased variance of optical flow with increasing ec-
centricity from the point being tracked. Since in our
case a looming object being tracked is by definition
much nearer than background objects and thus will re-
sult in much larger optical flow speeds, this effect does
not confuse the overall optical flow pattern, but rather
emphasizes details of target optical flow, thereby mak-

ing the collision avoidance computation easier. Warren
and Hannon (1990) investigated the optical flow pat-
tern generated by a moving observer while fixating on
a point on a plane. The resulting complex flow field
is nontrivially decomposed into translational and rota-
tional components, but since the optical speeds gener-
ated by a looming target are much greater than those
generated by the background during fixation, this de-
composition is unnecessary in our case. Daniilidis (1997)
showed that fixation on a stationary point simplifies es-
timation of self-motion parameters from the optical flow
pattern, a fact that is closely related to our analysis be-
low.

Let us examine how tracking an object affects the
computation in the case of our two representative colli-
sion avoidance models. We will first consider the case of
an object moving in the real world with speed (VX , VY , VZ)
relative to the observer. Let the speed of approach be
zero (VZ = 0). In this case the object is moving in a two
dimensional plane parallel to the viewing plane. Let us
also assume that the observer is equipped with an algo-
rithm that can exactly track the object and is able to
compensate for the movement of the object instantly.
In this scenario, as long as the observer is able to reject
self-motion components of optical flow induced due to
rotation of its sensor plane, the only visual motion it
experiences in the sensor plane is due to the change in
the viewing angle of the object. This component is usu-
ally much smaller than actual motion in any direction.
Therefore, the response of the collision avoidance mod-
els for this scenario will be greatly diminished relative
to approach scenarios.

Next, let us consider the case when VZ 6= 0. Since
the observer is able to compensate for the motion in the
x − y plane (and again neglecting self-motion compo-
nents), the only visual motion registered by the sensor
array is due to movement of the object in the z direc-
tion and due to a change in the viewing angle. If we
neglect the much smaller motion component due to the
change in the viewing angle as compared to the expan-
sive motion, the problem of 3D motion gets converted
into a 1D motion problem. This is the same scenario
as when the object is always maintained in the center
of the visual field. Over small distances, the tracking of
the object effectively makes VX = VY = 0. Thus, the
equation for motion of a projected point p on the sensor
plane, as shown in Figure 3, is now simplified to:

vx =
dx

dt
=
VX

Za
− xVZ

Za
= −xVZ

Za
(6)

vy =
dy

dt
=
VY

Za
− yVZ

Za
= −yVZ

Za
(7)

From these equations, while tracking it is possible
to compute the ratio of the speed of approach VZ to
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the distance Za of the object from the sensor plane
provided we can estimate the correct vx and vy values
at the sensor plane location (x,y). This ratio represents
the theoretical limit of what can be reconstructed about
target 3D motion from a 2D flow field (Koenderink and
van Doorn, 1987). For this reason, tracking an object
in the visual field may solve most of the problems that
biological collision avoidance models are faced with.

4 Methods

4.1 Software Simulations

We simulated the Rind and STI models, with and with-
out a tracking algorithm, using Matlab (The Math-
works, Natick, MA). The simulation environment was
designed to test the response of the models for colli-
sion and non-collision scenarios. In all the cases, a sin-
gle two-dimensional object, oriented parallel to the x-y
cartesian plane, moved relative to the observer inside a
three-dimensional world. Only the object was visible to
the observer.

Simulations took place in an arena of size 45 m
length × 45 m width × 55 m height. A 40 × 40 hemi-
spherical array of visual sensor units implementing ei-
ther the Rind or the STI model was used to compute
a response to the moving object. This array spanned
180◦ in both azimuth and elevation. The outputs of
both models are scalar values which are updated at each
timestep. In both cases, a decision to make an avoidance
turn must be made based on the time course of these
values. 1 ms was used as a timestep in all simulations,
resulting in a effective frame rate of 1000 Hz.

The size of the object was chosen to be 2.2 m×2.2 m.
For simulations of the Rind and STI models with track-
ing, the sensor array was kept pointing towards the ap-
proaching object as long as the object was in front of it.
The sensor plane was allowed to rotate only ±45◦ about
either axis, and so could not turn backwards to follow
the object after it passed the observer. The orientation
of the sensor array was determined by computing the
centroid of the intensity map of the visual field using
a feed-forward linear system. The tracking algorithm
computed the centroid (xc,yc) of object position on the
imaging array using the following formulae:

xc =

∑
i xi ·

∑
j E(xi, yj)∑

i

∑
j E(xi, yj)

(8)

yc =

∑
i yi ·

∑
j E(xi, yj)∑

i

∑
j E(xi, yj)

(9)

where E(xi, yj) is the intensity of a point at image
location (xi,yj), i and j span the x and y dimensions of

the sensor plane, and the midpoints of the sensor plane
are taken to be the origin.

Rather than perfectly orienting the sensor on the
target position, tracking was performed more realisti-
cally by adjusting the azimuth and elevation angles of
the sensor plane based on the centroid location at each
timestep using the following formulae:

θaz(t) = θaz(t− 1) + gaz × xc (10)

θel(t) = θel(t− 1) + gel × yc (11)

where the time instant t refers to the current frame and
(t − 1) to the last frame, θaz and θel are azimuth and
elevation angles respectively, and gaz and gel are the
empirically-set gains for the respective cases.

Due to the simplicity of the visual environment, this
algorithm computed an exact location of the target as
long as the object remained in the visual field of the
observer. We terminated the simulation whenever the
object went outside the visual field of the observer, ei-
ther because the sensor plane had to turn more than
±45◦ or if the object hit one of the walls in the 3D
arena. The projected angular size of the object on the
sensor plane was updated at each timestep such that
its size grew inversely with its distance from the sensor
array.

At the start of a simulation run, the simulated ob-
ject was assigned a starting (x, y, z) position. The z po-
sition of the object specified the distance of the object
from the viewer along a direction normal to the sensor
plane. The x and y positions were within ±5.6 m from
the center of the visual field. The z positions were be-
tween 44.8 m and 56 m from the observer. The speed of
the object along all three cartesian axes was then gen-
erated from a uniform random distribution. The range
of speeds was chosen from three different sets for the x
and the y axes. The first set was chosen between ±1.68
m/s, the second between ±2.24 m/s, and third between
±3.36 m/s. The speed along the z axis varied from
−2 to −20 m/s, with the negative sign of the z speed
denoting that the object always approached the view-
ing plane. A total of 1500 simulations were performed
for each model. Due to the random generation of the
speed, most trajectories resulted in non-collision sce-
narios. The object was considered close to an imminent
collision at a distance less than 5 m from the observer
(about twice the size of the object). The peak response
(Rpeak) of the model output was recorded along with
the object distance (dp) at which the response peaked
and the minimum distance (dm) the object reached to
the observer. We histogrammed model peak response
data against distance in 1.1 m bins and computed the
mean (R̄peak) and standard deviation (σR) in each bin.
R̄peak and σR were plotted versus both dp and dm. The
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Fig. 6 Experimental setup of the collision detection experi-
ment. Two pulleys (P1 and P2) control the trajectory of the
obstacle (Ob), a blue colored disc. Pulley P1 was mounted
on a DC motor (S1) and the speed of the obstacle was set
by varying the voltage of a power supply. A webcam (W)
mounted on a servo motor (S2) sent visual input to a laptop.
The laptop runs custom developed software to process the
visual information and detect an impending collision. For the
models with tracking, the laptop sent control signals to the
servo motor S2 via a servo control board.

data from the models with tracking capability were fit
with an inverse distance equation for all but one case:

R̄peak =
K1

d− d0
(12)

where d is either dp or dm, and K1 and d0 are fitting
constants.

For the Rind model with tracking, R̄peak versus dp

curve was linear and was fitted with the equation of a
line:

R̄peak = m · dp + c (13)

where m is the slope and c is a fitting constant.
In Section 5.5, we present a case of noisy tracking to

examine how sensitive the performance of the models
with tracking capability are to noise in centroid compu-
tation. This was done by adding a Gaussian-distributed
noise signal (mean = 0, variance = 8 pixels) to the cen-
troid output of the tracking algorithm. We must note
that the size of the sensor array is 40×40 and a variance
of 8 is 20% of its size. Therefore, these simulations rep-
resent a very unreliable tracking algorithm. These sim-
ulations were performed with x and y speeds randomly
chosen from a uniform distribution with speed between
±2.24 m/s. The z speed varied from -2.68 to -13.44 m/s
and a total of 500 simulation runs were performed for
both the Rind and STI models with tracking.

4.2 Implementation of collision models in a physical
system

In addition to simulations, a physical system was devel-
oped to test the collision avoidance models. All mod-
els were tested for collision and non-collision scenarios.
The tracking-capable collision detection models were

implemented so as to keep the approaching object in
the center of the visual field. The setup of the experi-
ment is shown in Figure 6. The hardware comprises a
web-camera (a Labtec webcam) as a visual sensor, a
servo motor (Futaba HS700BB) connected at the base
of the webcam for tracking, a pulley and DC motor ar-
rangement from which the obstacle is suspended, and
an Acer laptop (Microsoft Windows XP OS, 1.66 GHz,
dual-core Intel Centrino processor) for processing the
models. The collision detection models and tracking al-
gorithms were implemented in software using the Visual
C++ package (Visual Studio, Microsoft).

The setup shows a DC motor and pulley arrange-
ment that allows for repeatability of experiments and
was used to control the speed at which the object trans-
lates in the visual field. This was done by adjusting a
variable power supply which controlled the rotational
speed of the pulleys. The object was suspended from a
string which went around the two pulleys (see Figure 6).
The motion of the string added an additional swinging
movement (parallel to the camera plane) to the object,
which was random in nature. This made each run of an
experiment slightly different even when the speed of the
servo and pulley system were the same. The swinging
motion also affected the orientation of the object with
respect to the ceiling lights that were used for illumina-
tion. This in turn affected the contrast of the object as
it moved and added more complexity and randomness
to each experimental run.

The collision detection system used a webcam as a
visual sensor. The field of view of the camera was ±23◦

about an axis normal to its sensor plane. The webcam
could operate at up to 20 frames per second (fps) while
capturing images of size 352× 288. In order to process
images at 15 fps, it was necessary to downsample each
frame by a factor of two such that the models operated
on an image size of 176× 144.

We implemented a simple tracking algorithm to fol-
low a specifically colored (blue) object by using a cen-
troid detection scheme. A more sophisticated tracking
algorithm could be used to tackle more general scenar-
ios (Higgins and Pant, 2004). The simple algorithm is
beneficial in that it does not critically affect the com-
putational speed of the system, and still provides rea-
sonable performance to compare the operation of the
models with and without tracking capability. The algo-
rithm tracks an object by utilizing a servo motor con-
nected at the webcam’s base. This single servo motor
allows for only one degree of freedom for the webcam:
rotation about its vertical axis. The input frame from
the webcam has three color channels: red, green, and
blue. We used only the blue color plane to track the
object within the frame. The object itself was chosen
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to be a bright blue colored disc. Since the webcam can
only rotate about its vertical axis, the tracking algo-
rithm computed a positional parameter based on the
centroid of the blue pixels in the blue channel of every
frame. The centroid was computed by using the follow-
ing formula:

xc =

∑
i xi ·

∑
j T (I(xi, yj))∑

i

∑
j T (I(xi, yj))

(14)

where I(xi, yj) is the intensity of the blue pixel at image
location (xi,yj), and the thresholding function T (u) is
defined by

T (u) =
{
u u > 0.95Imax

0 u ≤ 0.95Imax
(15)

with Imax as the maximum intensity in the entire blue
channel of the image.

This centroid value was then processed by a PD
(proportional-derivative) controller treating xe = (xc−
xm) as an error signal, where xm is the center of the
image along the horizontal axis and is considered the
origin. The differential error signal ẋe was generated
by taking the difference between the error signal of the
current and previous frame. The output signal Scnt was
generated by using the following relationship:

Scnt = KP · xe +KD · ẋe (16)

where KP and KD are proportional and derivative gain
constants, respectively. The values of KP and KD were
experimentally determined. A servo control board (USB
16-servo controller, Pololu Corporation) was used to
send this signal to the servo motor that controlled the
orientation of the webcam.

The response of the models with tracking were af-
fected by the frame rate at which the webcam captured
images. A frame rate of 15 fps was not sufficient to
show large motions near the camera in a smooth man-
ner. This caused large adjustment in the camera angle
to track the object. This jerkiness in the motion of the
camera detracted from the response of the model.

In an actual collision avoidance system, the decision
to make a course correction has to be made at some
point. We have used the peak value from the running
average of the response to discriminate collision versus
non-collision. The length of the running average window
was set to three frames. This peak running-average was
used to compare the performance of the models.

5 Simulation results

In our investigations, we observed the peak response
of the two models and the corresponding distance be-
tween the object and the observer. The aim was to an-
alyze whether or not a thresholding scheme might be

employed with a collision detection model to judge an
imminent collision.

5.1 Rind model without tracking

In this set of simulations a single 2D object approached
the viewing plane from different starting positions within
the virtual arena as described in Methods. Figure 7a
shows the mean and standard deviation of the peak
response (R̄peak and σR) of the Rind model versus the
minimum distance the object ever reached from the ob-
server. The plot was truncated to show data only nearer
than 25 m from the observer. For distances greater than
25 m, the peak response was close to zero. The vari-
ances (σ2

R) for distances smaller than 7 m from the ob-
server are 72.5% to 113% of the mean R̄peak. These
large variances suggest that the model often responded
more weakly to a closer object than it did to a farther
one.

Another way of looking at the data is by plotting
R̄peak versus the distance at which that maximum re-
sponse occurred. Figure 7b shows these data. We again
note that for distances up to 12.5 m from the observer,
the variance is sometimes larger than the R̄peak. The
first data points in Figure 7b and 7c do not show any
variance because they represent two individual cases
and, therefore, we do not include them in our analysis.
For the case of an imminent collision (distance from the
observer < 5 m, shown by a dashed vertical line in the
figure), the variance of the model is 1.87 times R̄peak

and overlaps with the peak response values at distances
greater than 10 m. The large variance of the peak re-
sponse makes the determination of a simple threshold
upon which to make a collision avoidance maneuver im-
possible in this case.

5.2 STI model without tracking

The STI model was simulated utilizing the same visual
setup used for the Rind model. Figure 8a shows R̄peak

and σR of the STI model versus the minimum distance
from the observer. Figure 8b show R̄peak and σR versus
the distance at which that response was elicited. As be-
fore, for distances greater than 25 m, the peak response
was close to zero. Similar to the Rind model, we find
that the R̄peak of the STI model has large variance. The
first two data points in Figure 8b do not show any vari-
ance because they represent two individual cases and,
therefore, we do not include them in our analysis. For
the case of an imminent collision (distance from the
observer < 5 m, shown by a dashed vertical line in the
figure), σR is as large as 53% to 71% of the R̄peak value.
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(a) Rind without tracking (c) Rind with tracking
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Fig. 7 Mean peak response R̄peak (denoted by circles) and standard deviation σR (denoted by error bars) of the Rind model
versus the distance from the observer. For comparison, panels a and b are without tracking; panels c and d are with tracking.
Panels (a) and (c): R̄peak of the Rind model versus the minimum distance from the observer the object ever reached. Panels (b)
and (d): R̄peak of the Rind model versus the distance from the observer at which the peak response was attained. The dashed
vertical line denotes the distance at which collision is imminent. The thick dashed traces in panels c and d are theoretical fits
as described in the text.

The variance of R̄peak for these distances can be seen
to overlap with the variance at distances larger than 10
m. Again, a simple threshold determination for the STI
model for all possible collision scenarios is impossible.

5.3 Rind model with tracking

We simulated the Rind model equipped with a tracking
algorithm as described in Methods. The simulation sets
were the same as those used for testing the Rind model
without tracking. R̄peak and σR for the Rind model with
tracking versus the minimum distance from the object
are shown in Figure 7c. R̄peak values reach their max-
imum at a distance of 4.48 m from the observer, and

then unexpectedly decrease (see below). We have used
Equation 12 to fit the data up to the peak with fitting
parameters K1 = 8.45 and d0 = 5.72 m.

To better understand why we see a decrease in re-
sponse peak when objects are closest in Figure 7c, we
plotted R̄peak versus the distance at which the response
was recorded as shown in Figure 7d. We find that R̄peak

increases linearly as a function of distance. A linear fit
as described by Equation 13 with fitting parameters
m = 0.5945 and c = 11 m is also plotted in the figure
(dashed line). This plot does not show a decrease at
small object distances, which means that objects that
came close may have been the ones that were passing
close by the observer but not actually threatening a col-
lision. In non-collision cases, the Rind model has a de-
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0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

Distance from the observer at peak response (m)

Pe
ak

 re
sp

on
se

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

Distance from the observer at peak response (m)

Pe
ak

 re
sp

on
se

(b) STI without tracking (d) STI with tracking

Fig. 8 Mean peak response R̄peak (denoted by circles) and standard deviation σR (denoted by error bars) of the STI model
versus the distance from the observer. For comparison, panels a and b are without tracking; panels c and d are with tracking.
Panels (a) and (c): R̄peak of the STI model versus the minimum distance from the observer the object ever reached. Panels
(b) and (d): R̄peak of the STI model versus the distance from the observer at which the peak response was attained. The
dashed vertical line denotes the distance at which collision is imminent. The thick dashed traces in panels (c) and (d) represent
theoretical fits as described in the text.

creased response. The tracking algorithm allows the ro-
tation of the sensor plane up to an angle of±45◦ beyond
which the simulation is terminated and the approaching
object is deemed not a threat. These cases are respon-
sible for the low values of R̄peak at distances less than
5 m in Figure 7c. However, the linear trend of R̄peak

with large variance shows that even though the model
performs much better than the one without tracking,
the determination of the threshold is not trivial. The
threshold may be set at an R̄peak value of 6. However,
this may raise false alarms for some objects as far away
as 8.96 m. We must note that we simulated scenarios
that varied in approach speeds by almost one order of
magnitude (2 m/s to 20 m/s) at random approach an-

gles, and even though the response of the Rind model
with tracking is far from ideal, it is still usable.

5.4 STI model with tracking

In this set of simulations, we simulated an STI model
with tracking. The simulation parameters were the same
as the ones used in simulating the STI model without
tracking. The plot of R̄peak and σR for the STI model
with tracking versus the minimum distance from the
object is shown in Figure 8c. R̄peak closely follows an
inverse relation as seen in Equation 12 with fitting pa-
rameters K1 = 3.2 and d0 = 1.24 m.
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In Figure 8d, R̄peak is plotted with the distance at
which the response occurred. The data almost exactly
follows the above mentioned equation with fitting pa-
rameters K1 = 2.5 and d0 = 3.584 m as shown by the
dashed trend line in the figure.We find that even though
the variance for the maximum R̄peak is large (distance
< 5 m), it does not overlap with the range of values for
distances outside that range. Therefore, the STI model
with tracking may be used as a reliable threshold based
collision avoidance system and the improvement with
respect to the STI model without tracking is dramatic.
Figure 8d shows that if the threshold is set at 1.6, all
objects that pose a threat of imminent collision (dis-
tance < 5 m) will be detected. The better performance
of the STI model with tracking with respect to the Rind
model with tracking is due to its explicit computation
of expansive motion. Once the tracking model neutral-
izes any motion in the x-y plane, the expansive motion
computed on the projected image exactly estimates the
motion towards the viewing plane as discussed in Sec-
tion 3.2.

5.5 Effect of noisy tracking

In all the simulations with tracking discussed above,
the tracking algorithm was able to exactly compute the
position of the approaching object. This might not nec-
essarily be achievable in a complex real-world scenarios
with a non-ideal tracking algorithm. To test whether a
less accurate tracking algorithm would be as effective as
an exact algorithm, we introduced measurement noise
in the centroid computation as detailed in Section 4.
The results from this set of simulations for both the
Rind and the STI model with tracking are shown in
Figure 9a and 9b, respectively. The plots indicate that
the imprecise tracking algorithm was still sufficient to
make the response of the collision avoidance models re-
spond inversely with the distance from the object. The
R̄peak values for the Rind model with tracking in this
case almost follow an inverse relation with distance as
per Equation 12, with fitting parameters K1 = 25 and
d0 = 4.6 m. For the STI model with tracking, R̄peak

also follows the same equation with fitting parameters
K1 = 3 and d0 = 2.36 m. We note that the STI model
with tracking is more affected by the noisy tracking
algorithm than the Rind model with tracking. This is
expected because the response of the STI model with
tracking relies totally on the tracking parameters to
cancel the effect of motion parallel to the sensor plane.
The Rind model with tracking on the other hand has
a local inhibitory network that can suppress weak hor-
izontal motion due to noise in tracking.
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Fig. 9 Mean peak response R̄peak (denoted by circle) and
standard deviation σR (denoted by error bar) versus the dis-
tance from the sensor plane for noisy tracking. The dashed
line in both the cases represents respective non-linear fits as
described in the text. (a) R̄peak versus the distance from the
observer at which the peak response was attained for the Rind
model with a noisy tracking algorithm. (b) R̄peak versus the
distance from the observer at which the peak response was
attained for the STI model with a noisy tracking algorithm.

6 Physical implementation of collision
avoidance models

The simulations described above show that the response
of the Rind and the STI models with tracking increase
inversely with the distance between the object and the
observer. To verify our simulation results in more prac-
tical scenarios, we implemented these models into a
physical collision avoidance system. Results are only
shown for the STI model, but qualitatively similar re-
sults were obtained for the Rind model.
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Direct Collision

Oblique
       Collision

Non-Collision

W

Fig. 10 Different approach trajectories of an object. The
lines indicate a direct collision, an oblique collision, and a
non-collision approach towards a webcam (W).

6.1 The STI model

The STI model with and without tracking was evalu-
ated under the same test conditions. The object (a blue
disc) was made to move at a speed of 17 cm/sec. The
flat surface of the disc was made to face the webcam
at the start of every experiment. However, any small
change in the orientation due to the self-motion of the
object was not corrected for. We first present response
traces for typical direct-collision, oblique-collision, and
non-collision cases as diagrammed in Figure 10.

Response traces were computed by taking an av-
erage of ten direct-collision approach cases. In Figure
11a, the thin line shows the average response of the
STI model without tracking. The thick line shows the
response of the STI model with tracking. As expected,
the responses for both with and without tracking cases
are almost the same since the object is almost always
in the center of the visual field. The slight difference
in the two traces originates due to the random swing-
ing of the object as it approaches the webcam. For the
model with tracking, the camera moves to compensate
this motion and thereby affects the response. The re-
sponse peaks at roughly 1.2 seconds before the collision
at which instant the object occupies the entire visual
field of the webcam. The dashed line in the figure shows
the distance of the object from the webcam.

Figure 11b shows the average response for the ob-
ject approaching at a slightly oblique trajectory. Ten
experiments were performed for the STI model with
and without tracking and the response was averaged.
The angle of approach was 10◦ off the line normal to
the camera plane. Some part of the object was always
within the visual field of the camera throughout its ap-
proach. The thin line in the figure once again represents
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Fig. 11 Average response of the STI model with and with-
out tracking. The thin line represents the frame-by-frame re-
sponse of the simple STI model; thick line represents the re-
sponse of the STI model with tracking. The response magni-
tude is shown on the left y-axis. The dashed line shows the
distance of the obstacle from the camera plane as a function of
time. The distance scale is shown on the right y-axis. Negative
distances mean that the object is behind the camera. (a) Re-
sponse for a direct-collision scenario. The response tracks the
approach of the obstacle and peaks roughly a 1.2 sec before
collision. (b) Response for an oblique approach scenario, with
the angle of approach set at 10◦. Note that the response of
the model with tracking is similar to the direct-collision case,
while it is much diminished for the non-tracking STI model.
(c) Response for a non-collision scenario. The responses of
the model for both with and without tracking cases are sig-
nificantly smaller than the direct collision cases.
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the response of the STI model without tracking. The
thick line represents the response of the same model
with tracking capability. It is clear that even with a
slightly oblique approach, the response of the simple
STI model is much smaller as compared to a direct col-
lision approach. However, the response trace for the STI
model with tracking is similar to the case of direct col-
lision trajectory. This is because the webcam was able
to center the approaching object in its visual field for
the STI model with tracking, thereby increasing the net
expansive motion seen by the camera. The peak in this
case is more sustained because of the camera motion
which increased the response of the model with track-
ing.

We compare the above responses with the average
response to a non-collision case. Again, ten experiments
were performed for each case and the response traces
were averaged. The trajectory was set such that the
object was visible in the view field for virtually the en-
tire length of the experiment as shown in Figure 10.
It entered the view field from the right side and exited
from the left, and was always at a distance of ≥ 30 cm.
Figure 11c shows the response traces. We find that the
response of the STI model with tracking (thick line)
is greater in magnitude when compared with the STI
model (thin line). However, compared to the responses
for direct and oblique collision, these responses were
much smaller in magnitude.

Next, we compared the STI model with and without
tracking quantitatively by using peak running average
(as described in Methods) as the figure of merit for var-
ious collision and non-collision scenarios. Is it possible
to set a threshold to reliably discriminate collision from
non-collision cases without raising a false alarm? Fig-
ure 12 shows the mean and standard deviation of the
peak running-average values recorded for multiple ex-
periments with the STI model with and without track-
ing. The leftmost pair of bars in the figure show the
data for non-collision experiments. Only ten experi-
ments were conducted for each case because the stan-
dard deviation of the peak running-average responses
was small. The object translated at a speed of 17 cm/sec
in a trajectory such that it was always at a distance
≥ 30 cm. The mean response of the STI model with
tracking (gray bar) is about twice as large as the re-
sponse of the non-tracking model (white bar). The re-
sponse of the model with tracking is larger because of
the motion of the camera while tracking.

The second pair of bars from the left in Figure 12
show the mean and standard deviation for ten direct-
collision experiments each. The responses for both the
tracking and without tracking cases are comparable for
this set. The mean of the peak running-average values
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Fig. 12 Experimental data from the STI model with and
without tracking for seven scenarios. The white bars show
data for the STI model without tracking, while the gray bars
show data for the STI model with tracking. Standard devi-
ation is indicated for each experiment. The thick line shows
the minimum threshold that needs to be set to detect all col-
lision scenarios for the STI model with tracking, while the
thin line shows the minimum threshold for the STI model
without tracking. The leftmost pair of bars show the mean
response and the standard deviation for non-collision cases.
The second pair from the left shows the mean and standard
deviation for direct-collision cases. The third pair shows the
response for an oblique trajectory where the angle of approach
was within ±5◦ of the camera axis. The fourth pair shows
the mean response for an oblique approach with the angle of
approach between 8◦-10◦ off the camera axis. The fifth and
sixth pair show the responses at 15◦ and 20◦, respectively.
The rightmost pair shows the mean and standard deviation
of the response for a horizontally moving obstacle.

for the direct-collision case is at least three times that
for the non-collision case.

The third pair of bars in Figure 12 show the mean
values of the peak running-average response of the model
for an oblique trajectory where the starting position of
the object was within ±5◦ of the axis normal to the
sensor plane. Each model was tested for 20 experiments
because the standard deviation for oblique trajectories
was larger than the standard deviation for direct and
no collision trajectories. The responses for the model
with and without tracking are not too different from
each other and are comparable to the mean values of
the direct-collision trajectories. In this case, the angle
of approach is narrow and during the last phase of ap-
proach, the obstacle is almost in the center of the vi-
sual field and hence elicits a strong response for both
the cases. However, if the angle of approach is slightly
increased to be between 8◦ and 10◦ off-axis, the mean
of the peak running-average values are very different
for the tracking and non-tracking cases as seen in the
fourth pair of bars in Figure 12. Data were collected
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from 20 experiments for each case. The mean of the
peak running-average value for the STI model without
tracking reduced by almost half of its value as compared
to the case of oblique trajectories within 5◦ of the nor-
mal axis. The mean value of the STI model with track-
ing, on the other hand, is almost unchanged. This was
due to the ability of the model with tracking to keep
the object in the center of its visual field, thereby in-
creasing the peak running-average response. This is also
witnessed in the fifth and sixth pair of bars in Figure
12, for which the angle of approach was increased to 15◦

and 20◦, respectively. The mean of the peak running-
average value for the STI model without tracking for
the latter case is even smaller than the no collision
case. This was due to the wide angle of approach of
the object at the start of the trajectory. The mean of
the peak running-average for the STI model with track-
ing remains almost unchanged from the direct collision
case.

Except for the oblique approach case from wide an-
gles ( 20◦), the mean value of the STI model without
tracking is still much larger than its mean for the non-
collision cases shown by the first pair of bars in Figure
12. This begs a question: is there any other advantage
to the STI model with tracking if we can separate most
of the collision cases from the non-collision cases by set-
ting a threshold for the STI model without tracking?

To answer this question, we conducted another ex-
periment where the object was made to move horizon-
tally across the visual field at a distance of 20-25 cm
from the camera, at a speed of 17 cm/sec. The mo-
tion of the object was parallel to the webcam and the
object crossed the visual field of the stable camera (in
the STI model without tracking) in less than 500 ms.
The mean and standard deviation of the peak running-
average response for these non-collision experiments is
shown by the rightmost pair of bars in Figure 12. The
responses for the STI model with and without tracking
are almost equal in magnitude. The STI model with
tracking should have negated the horizontal motion by
following the object across the visual field of the we-
bcam. However, due to the fast motion of the object
in the visual field, the webcam was unable to smoothly
track the object. This self-induced motion is responsi-
ble for the mean peak response of the STI model with
tracking being comparable with its non tracking coun-
terpart. This peak response is about half of the mean
peak response for all collision cases shown in the figure.
The mean value of the peak running-average response
for the STI model, on the other hand, is larger than
its mean value for the oblique approach at angles wider
than 8◦!

Since a unique threshold cannot be set for discrimi-
nation, the STI model without tracking is unable to re-
liably detect collisions for approach angles larger than
20◦ and raises a false alarm when an object moves hor-
izontally across the webcam at fast speeds. The thick
horizontal line in the figure shows the minimum thresh-
old that is needed to detect all collisions for the STI
model with tracking and the thin horizontal line shows
the same for the same model without tracking. It is easy
to see that the STI model with tracking is able to dis-
tinguish all the collision scenarios from the non-collision
ones. However, the STI model without tracking cannot
do so without raising false alarms. Tracking increases
the capability of the STI model to respond reliably to
collision scenarios and at the same time, reduce false
alarms. We see that even with a simple tracking al-
gorithm the performance of the STI model improves
remarkably and is in agreement with our simulation
analysis.

7 Discussion

In this study, we evaluated the limitations of biologi-
cal collision avoidance models. Optical flow based al-
gorithms have been widely used for this purpose. How-
ever, the computation of optical flow is mathematically
ill-defined and requires additional assumptions about
the visual scene which are not always warranted. The
use of correlation-based models in place of optical flow
based algorithms is advantageous only to the extent
that it presents a mathematically stable and computa-
tionally simple alternative (Reichardt et al., 1988; Verri
and Poggio, 1989). However, it does not address the is-
sue that the local speed of a point on the sensor plane
may not be used to disambiguate between the infinitely
many solutions for the corresponding motion in the real
world. We see from the simulation results in Section
5 that both the Rind and the STI models fail to re-
liably detect an impending collision and may lead to
false alarms or fail to report an imminent collision. The
major reason behind the failure in the Rind model is its
inability to reject horizontal motion. In case of the STI
model, it is the manner in which it computes expansion
by dividing the visual field into four quadrants without
regard to the position of the obstacle in it.

The major shortcoming of any collision avoidance
model is due to an inherent limitation of representing
three-dimensional motion in the real world on a two-
dimensional sensor array. The analysis presented here
shows that if the response of collision avoidance models
can be made dependent on the distance of an obstacle
from the observer, this problem may be solved. We have
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shown how tracking may be used with the Rind and STI
models to relate their responses to distance.

The results from various collision and non-collision
experiments clearly illustrate that by letting the visual
sensor align itself with an approaching object, the effec-
tiveness of the model is dramatically improved. In our
study, the performance of the STI model with tracking
was better than the Rind model with tracking. This we
attribute largely to two factors. Firstly, the Rind model
relies on edge detection and in our implementation, the
low frame rate of the camera sometimes blurred the
motion which made edge detection difficult. Secondly,
the lateral inhibitory network in the Rind model always
tries to suppress the response magnitude of the model.
In order to get a strong response from this model, the
activation of its excitatory units must be large enough
to swamp the effect of inhibitory units. This goes back
to the problem of edge detection. Since the frame rate
of our input was not very high, the edge response was
weak and so was the response of the excitatory units.
The STI model with tracking, on the other hand, does
better on both accounts, and in general is a more prac-
tical model for collision avoidance.

The primary effect of the fact that our simulation
and physical implementation of these collision avoid-
ance algorithms was discrete-time (to be compared to
continuous-time processing in brains) was in detection
of edges in the physical implementation as described
above. Due to the very high frame rate possible in the
simulations (1000 Hz), the simulation results are virtu-
ally indistinguishable from continuous-time. The lim-
ited frame rate of the physical implementation and the
relatively low quality of the webcam images were an
intentional attempt to determine if either of these bi-
ological models make practical algorithms for collision
detection. The STI model with tracking performs rather
well even in these non-ideal circumstances.

It should be noted that in all our simulation ex-
periments there was no background visible to the ob-
server (only the target was visible), and in our physical
implementation only relatively faraway background ob-
jects (the laboratory wall, for example) could be seen.
This raises the question as to whether the visual mo-
tion of the background caused by movement of the cam-
era during tracking could interfere with collision detec-
tion performance. The apparent visual motion due to
rotation of the camera is independent of distance to
the object (Gibson, 1950), so rapid camera movement
during tracking could generate large apparent motion
regardless of distance to the background objects. Our
physical implementation addresses this question implic-
itly in that an unaltered laboratory background was
used without significant effects on the results as com-

pared to simulation. Additionally, our tracking control
system was designed to track as smoothly as possible,
thus eliminating unnecessary camera motion artifacts.
However, a highly textured and/or high-contrast back-
ground would clearly interfere more with collision de-
tection performance than any background we used in
our experiments, and we have not explicitly experi-
mented with this.

The two biological models of insect collision avoid-
ance we have analyzed in this study are well accepted by
the biological community but fail to perform well when
used without tracking in practical collision scenarios.
Despite the lack of evidence that insects actively direct
their gaze to looming objects, this fact suggests that in-
sects and other organisms may alter their gaze to fixate
on looming objects, which based on our results will dra-
matically improve their ability to distinguish collision
from non-collision scenarios.
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